• Title/Summary/Keyword: Secondary winding

Search Result 213, Processing Time 0.026 seconds

Quench Characteristics of a Flux-lock type SFCL with Secondary Windings Connected in Serial and Parallel (2차 권선을 직.병렬연결한 자속구속형 전류제한기의 퀜치특성)

  • Park, Hyoung-Min;Cho, Yong-Sun;Choi, Hyo-Sang;Oh, Geum-Kon;Han, Tea-Hee;Lim, Sung-Hun;Hwang, Jong-Sun
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.432-434
    • /
    • 2006
  • We investigated the quench characteristics of a flux-lock type superconducting fault current limiter (SFCL) according to the number of the superconducting elements at the subtractive polarity winding of a transformer. The flux-lock type SFCL consists of the transformer with a primary winding and two secondary windings connected in parallel, and the superconducting element was connected with secondary winding in series, respectively. The applied voltage at that tin was 200V. when two superconducting elements of the secondary winding was connected in parallel, the peak lie current increased up to 99A, while that flowing in a superconducting element in conventional flux-lock type SFCL showed 50A under the same conditions, the impedance of secondary winding under the same situation showed the opposite behavior. This enabled the parallel structure to be easy to increase the capacity of power system, in the meantime, The quench between two superconducting elements in the SFCL with two secondary windings connected in parallel was achieved simultaneously. While the quench-starting point was slightly different in the SFCL with two superconducting elements connected in series. We found that the parallel connection between the secondary windings increased the power capacity and let quench characteristics improve through their mutual linkage.

  • PDF

Current Limiting Characteristics of Flux-lock Type SFCL according to Inductance Variation

  • Choi Hyo-Sang;Park Hyoung-Min;Cho Yong-Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.2
    • /
    • pp.87-89
    • /
    • 2006
  • We investigated the current limiting characteristics of flux-lock type superconducting fault current limiter(SFCL) according to inductance variation of coil 2. The flux-lock type SFCL consists of two coils. The primary coil is wound in parallel to the secondary coil through an iron core, and the secondary coil is connected to the superconducting element in series. The operation of the flux-lock type SFCL can be divided into the subtractive and the additive polarity winding operations according to the winding directions between the coil 1 and coil 2. The current limiting characteristics in two winding directions were dependent of on the ratio of the number of turns of coil I and coil 2. The fault current increased when the number of turns of coil 2 increased in the subtractive polarity winding. On the contrary, the fault current decreased under the same conditions in case of the additive polarity winding.

Test Results of a Three Phase 10㎸A HTS Transformer With Double Pan Cake Coils (3상 10kVA 더블 팬케익 코일형 고온초전도 변압기 특성시험 결과)

  • 이승욱;이희준;차귀수;이지광;최경달;류경우;한송엽
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.3
    • /
    • pp.101-106
    • /
    • 2003
  • The high temperature superconductor transformers gain interests from the industries. This paper described construction and test results of 10㎸A HTS transformer Three phase transformer with double pancake windings were constructed. To reduce the leakage magnetic field, secondary coil were placed between the two primary coils. BSCCO-2223 wire. silicon sheet steel core and FRP cryostats were used to construct the transformer. Three coils were stacked in one cryostat. Two double pancake coils were connected in series for the primary coil and one double pancake coil was used for the secondary coil. Total number of turns of the primary winding and the secondary winding were 112turns and 98urns, respectively, The rated voltages of each winding were 440/220V. The rated currents of each winding were 13.1/26.2A. After the tests of basic properties of the three phase HTS transformer using no-load test, short-circuit test and full-load test, continuous operation of 100 hours with pure resistive load has been carried out. Test results proved over-load capability and reliability of the HTS transformer.

Current Limiting Characteristics of a Flux-Lock Type SFCL for a Single-Line-to-Ground Fault

  • Oh, Geum-Kon;Jun, Hyung-Seok;Lee, Na-Young;Choi, Hyo-Sang;Nam, Gueng-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.9
    • /
    • pp.70-77
    • /
    • 2006
  • We have fabricated an integrated three-phase flux-lock type SFCL, which consists of an YBCO($YB_a2Cu_3O_7$) thin film and a flux-lock reactor wound around an iron core of each phase. In order to apply the SFCL in a real power system, fault analyses for the three-phase system are essential. The short-circuit currents were effectively limited by adjusting the numbers of winding of each secondary coil and their winding directions. The flux flow generated in the iron core cancelled out under the normal operation due to the parallel connection between primary and secondary windings. However, the flux-lock type SFCL with same iron core was operated just after the fault due to the flux generating in the iron core. To analyze the current limiting characteristics, the additive polarity winding was compared with the subtractive one in the flux lock reactor. Whenever a single line-to-ground fault occurred in any phase, the peak value of the line current of the fault phase in the additive polarity winding increased up to about 12.87 times during the first-half cycle. On the other hand, the peak value in the subtractive polarity winding increased up to about 34.07 times under the same conditions. This is because the current flow between the primary and the secondary windings changed to additive or subtractive status according to the winding direction. We confirmed that the current limiting behavior in the additive polarity winding was more effective for a single-line-to-ground fault

Study on the Damage Pattern Analysis of a 3 Phase 22.9/3.3kV Oil Immersed Transformer and Judgment of the Cause of Its Ignition (3상 22.9/3.3kV 유입변압기의 소손패턴 해석 및 발화원인 판정에 관한 연구)

  • Choi, Chung-Seog
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1274-1279
    • /
    • 2011
  • The purpose of this paper is to present the manufacturing defect and damage pattern of a 3 phase 22.9/3.3kV oil immersed transformer, as well as to present an objective basis for the prevention of a similar accident and to secure data for the settlement of PL related disputes. It was found that in order to prevent the occurrence of accidents to transformers, insulating oil analysis, thermal image measurement, and corona discharge diagnosis, etc., were performed by establishing relevant regulation. The result of analysis performed on the external appearance of a transformer to which an accident occurred, the internal insulation resistance and protection system, etc., showed that most of the analysis items were judged to be acceptable. However, it was found that the insulation characteristics between the primary winding and the enclosure, those between the ground and the secondary winding, and those between the primary and secondary windings were inappropriate due to an insulating oil leak caused by damage to the pressure relief valve. From the analysis of the acidity values measured over the past 5 years, it is thought that an increase in carbon dioxide (CO2) caused an increase in the temperature inside the transformer and the increase in the ethylene gas increased the possibility of ignition. Even though 17 years have passed since the transformer was installed, it was found that the system's design, manufacture, maintenance and management have been performed well and the insulating paper was in good condition, and that there was no trace of public access or vandalism. However, in the case of transformers to which accidents have occurred, a melted area between the upper and the intermediate bobbins of the W-phase secondary winding as well as between its intermediate and lower bobbins. It can be seen that a V-pattern was formed at the carbonized area of the transformer and that the depth of the carbonization is deeper at the upper side than the lower side. In addition, it was found that physical bending and deformation occurred inside the secondary winding due to non-uniform pressure while performing transformer winding work. Therefore, since it is obvious that the accident occurred due to a manufacturing defect (winding work defect), it is thought that the manufacturer of the transformer is responsible for the accident and that it is lawful for the manufacture to investigate and prove the concrete cause of the accident according to the Product Liability Law (PLL).

Current Limiting Characteristics of a Flux-lock type SFCL with Secondary Windings Connected to the Superconducting elements in parallel (초전도 소자 병렬 연결에 따른 자속구속형 한류기의 전류제한 특성)

  • Park, Hyoung-Min;Cho, Yong-Sun;Choi, Hyo-Sang;Oh, Geum-Kon;Jung, Soo-Bok;Lim, Sung-Hun;Choi, Myong-Ho
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.229-230
    • /
    • 2007
  • We investigated the quench characteristics of a superconducting element, two superconducting elements in order to increase the current capacity of flux lock type SFCL. The flux-lock type SFCL consisted of the transformer with a primary winding and a secondary winding connected in parallel, and the superconducting element was connected with secondary winding in series. The applied voltage at that time was 160 ${\sqrt{3}}$. We found that the parallel connection between the superconducting elements increased the power capacity and let quench characteristics improve through their mutual linkage.

  • PDF

A New PWM DC/DC Converter Topology with Multi-Output Using Single Secondary Winding (단일 2차측 권선을 이용한 다중 출력용 새로운 PWM DC/DC 컨버터 회로)

  • Lee, Dong-Yun;Hyun, Dong-Seok;Choy, Ick;Song, Joong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1339-1341
    • /
    • 2000
  • This paper presents a new PWM DC/DC converter with multi-output using single secondary winding, which has two output characteristics of the isolation and non-isolation simultaneously. The proposed converter topology is consisted of the only one switch and single secondary winding. The proposed converter, therefore, has advantages not only low cost but also high power density. Operating principal of the proposed converter topology with conventional ZVT (Zero-Voltage-Transition) is illustrated in detail and the validity of the converter is verified with several interesting simulation results.

  • PDF

Current Limiting Characteristics of Separated Three-phase Flux-coupling Type SFCL according to Winding Number of Coil 2 and Winding Direction (삼상 분리형 자속커플링 전류제한기의 2차 권선의 턴 수 및 결선 방향에 따른 전류제한 특성)

  • Kim, Yong-Jin;Du, Ho-Ik;Doo, Seung-Gyu;Kim, Min-Ju;Lee, Dong-Hyeok;Han, Byoung-Sung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.8
    • /
    • pp.694-697
    • /
    • 2009
  • The separated three-phase flux-coupling type superconducting fault current limiter(SFCL) is composed of a series transformer and superconducting unit of the YBCO coated conductor. The primary and secondary coils in the transformer were wound in series each other through an iron core and the YBCO coated conductor was connected with secondary coil in parallel. In this paper, we investigated the current limiting characteristics through winding number of coil 2 and winding direction in the flux-coupling type SFCL. Through the analysis, it was shown that additive polarity condition and lower winding number of coil 2 have advantaged from the point of view of fault current limiting and burned of YBCO coated conductor.

Analysis of Interleaving Effect for Toroidal Type Transformer Windings (토로이달 타입 변압기 권선의 Interleaving 효과 분석)

  • Shin, Kyoung-Gu;Kang, Byeong-Geuk;Chung, Se-Kyo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.3
    • /
    • pp.255-261
    • /
    • 2015
  • An analysis of the interleaving effect for the secondary winding distribution of a toroidal transformer is presented in this paper. The equations to calculate the leakage inductance of the toroidal transformer are derived using MMF diagrams for the different secondary winding distributions. The simulation and experimental results are provided to show the validity of the theoretical calculation.

Winding Disposition to Minimize the Output Interference of Transformers for the High-Speed EMU (동력 분산형 고속철도용 변압기의 출력 간섭현상을 저감시키기 위한 권선 배치 방법)

  • Park, Byoung-Gun;Ahn, Sung-Kuk;Hyun, Dong-Seok
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1873-1877
    • /
    • 2010
  • In the high-speed EMU, the modularized traction converter produces the significant harmonic currents caused from the switching behavior of a power converter. These harmonic currents bring the interference among the traction equipment. One way to minimize the interference is to design the secondary windings of a power transformer decoupled magnetically as possible. This paper presents a magnetic field analysis on a winding disposition to clarify an impact on magnetic decoupling between secondary windings, under a limited height of a train. Two winding dispositions for a single-phase shell-type transformer are constructed and simulated by a three-dimensional finite elements method (FEM) model. Two different winding dispositions are constructed and simulated by three-dimensional FEM model using Maxwell3D.

  • PDF