• Title/Summary/Keyword: Secondary voltage

Search Result 730, Processing Time 0.027 seconds

Analysis of dominant impurities in Cu and Ta films using SIMS and GDMS (SIMS와 GDMS를 이용한 구리와 탄탈 박막내의 주요불순물 분석)

  • ;Minoru Isshiki
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.2
    • /
    • pp.79-85
    • /
    • 2004
  • Secondary ion mass spectrometry(SIMS) and glow discharge mass spectrometry(GDMS) were used to determine the impurity concentrations of hydrogen, carbon, and oxygen elements in the Cu and Ta films, and the results of SIMS and GDMS analysis were carefully considered. The Cu and Ta films were deposited on Si (100) substrates at zero substrate bias voltage and a substrate bias voltage of -50 V(Cu films) or -125 V(Ta films) using a non-mass separated ion beam deposition method. As a result of SIMS with Cs+ ion beam, in the case of the Cu and Ta films deposited without the substrate bias voltage, many strong peaks were observed, which is considered to be detected as a the cluster state such as CxHx, OxHx, CxOxHx. All the peaks of SIMS results could be interpreted by the combination of these dominant impurities. Moreover, it was confirmed that the quantitative results of GDMS analysis were accordant to the SIMS results.

EMI Noise Source Reduction of Single-Ended Isolated Converters Using Secondary Resonance Technique

  • Chen, Zhangyong;Chen, Yong;Chen, Qiang;Jiang, Wei;Zhong, Rongqiang
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.403-412
    • /
    • 2019
  • Aiming at the problems of large dv/dt and di/dt in traditional single-ended converters and high electromagnetic interference (EMI) noise levels, a single-ended isolated converter using the secondary resonance technique is proposed in this paper. In the proposed converter, the voltage stress of the main power switch can be reduced and the voltage across the output diode is clamped to the output voltage when compared to the conventional flyback converter. In addition, the peak current stress through the main power switch can be decreased and zero current switching (ZCS) of the output diode can be achieved through the resonance technique. Moreover, the EMI noise coupling path and an equivalent model of the proposed converter topology are presented through the operational principle of the proposed converter. Analysis results indicate that the common mode (CM) EMI noise and the differential mode (DM) EMI noise of such a converter are deduced since the frequency spectra of the equivalent controlled voltage sources and controlled current source are decreased when compared with the traditional flyback converter. Furthermore, appropriate parameter selection of the resonant circuit network can increase the equivalent impedance in the EMI coupling path in the low frequency range, which further reduces the common mode interference. Finally, a simulation model and a 60W experimental prototype of the proposed converter are built and tested. Experimental results verify the theoretical analysis.

A Study on the Electronic Ballast for Neon Lamp (네온 램프용 전자식 안정기에 관한 연구)

  • 강범석;김희준
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.314-318
    • /
    • 1998
  • This paper discusses the development of electronic ballast for neon lamp as an application of a zero voltage switching high frequency inverter. Abnormal increase of secondary voltage due to grounded fault or partial damage of serial arranged loads is clarified and the protection circuit for this abnormal voltage increase is proposed. Also stable lighting condition for removing the unstable characteristics due to different load conditions is proposed.

  • PDF

A Main Power Supply for Railway Vehicles using 3-level converters (3레벨 컨버터를 이용한 철도차량용 주 전력변환장치)

  • Rho Sung-Chan;Kim Yoon-Ho
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.646-652
    • /
    • 2003
  • AS a main Power Supply of the Railroad Vehicles, a three-Level ZVZCS DC/DC Converter is proposed in this paper. The proposed three-Level DC/DC Converter achieves zero voltage and zero current switching for the main switches. Its attribute is that the voltage across the switches is half the value of the input voltage. Also. using a diode and secondary side of the transformer, and simple auxiliary circuits it achieves zero current switching of the auxiliary switches. The principle operation and simulation results are included.

  • PDF

Fabrication and Evaluation of AC 400 kV High Voltage Divider using Electric Field Sensor (전기장 센서를 이용한 교류 400 kV 고전압 분압기의 제작 및 평가)

  • Lee, Sang-Hwa;Han, Sang-Gil;Jung, Jae-Kap;Kang, Jeon-Hong;Kim, Yoon-Hyoung;Jeong, Jin-Hye;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.3
    • /
    • pp.265-269
    • /
    • 2008
  • Output voltage value of AC high voltage source has usually been obtained by measuring the low arm voltage of high voltage divider or the secondary voltage of high voltage transformer. In this study, we have fabricated the AC 400 kV high voltage divider using high voltage electrode and electric field measurement sensor. The dividing ratio of the fabricated 400 kV high voltage divider was evaluated using reference 400 kV capacitive divider. The dividing ratio of 400 kV high voltage divider is found to be 12,322 and has the good linearity within 0.63 % against AC high voltage up to 400 kV. Therefore, the developed 400 kV high voltage divider could evaluate 400 kV high voltage supply and voltage divider used in industry.

Estimation of the Separate Primary and Secondary Leakage Inductances of a Y-Δ Transformer Using Least Squares Method

  • Kang, Yong-Cheol;Lee, Byung-Eun;Hwang, Tae-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.538-544
    • /
    • 2010
  • This paper proposes an estimation algorithm for the separate primary and secondary leakage inductances of a three phase $Y-\Delta$ transformer using least squares method. The voltage equations from the primary and secondary windings are combined into a differential equation to estimate the separate primary and secondary leakage inductances in order to use the line current of the delta winding. Separate primary and secondary leakage inductances are obtained by applying least squares method to the differential equation. The performance of the proposed algorithm is validated under transient states, such as magnetic inrush and overexcitation, as well as in the steady state with various cut-off frequencies of low-pass filter. The proposed technique can accurately generate separate leakage inductances both in the steady and transient states.

The Research for a Structure of Current Limiter using a Phasic Similitude of Magnetic Circuit (자기회로의 위상학적 상사성을 이용한 전류제한기 구조에 관한 연구)

  • Ji, Geun-Yang;Min, Kyung-Il;Lee, Su-Won;Jang, Bong-Hwan;Moon, Young-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2128-2135
    • /
    • 2009
  • In this paper, current limiter using a magnetic switching which is based on magnetic flux change in the case of fault is proposed. This current limiter consists of iron-core and three parts of coils. One is the primary coil connected to the power system. Another is the secondary coil wound to the opposite direction of the primary coil's winding. The other is the secondary of the secondary coil which is a movable copper plate winding and located below the secondary coil. In the normal state, the magnetic flux produced in the primary and secondary coils flows to the opposite directions each other and becomes to be canceled out. Therefore the voltages induced between the coils are zero. In the case of a fault, at the moment of a fault occurrence recognition, the switch connected to a secondary coil is opened and the secondary of the secondary coil is pulled out to the outside of the iron-core. Then, magnetic flux becomes to flow through the iron-core. Accordingly, the voltage is induced between the both ends of the primary coil and makes the current reduced. Therefore it is possible to cut off the circuit breaker easily with the proposed current limiter. This paper analyzes the current limiting effects and the detailed results are given.

Unbalancing Voltage Control of LVDC Bipolar Distribution System for High Power Quality (전력 품질 향상을 위한 LVDC 양극성 배전 시스템의 불평형 전압 제어)

  • Lee, Hee-Jun;Shin, Soo-Choel;Kang, Jin-Wook;Won, Chung-Yuen
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.6
    • /
    • pp.486-496
    • /
    • 2016
  • The voltage unbalance of an LVDC bipolar distribution system was controlled for high power quality. Voltage unbalance may occur in a bipolar distribution system depending on the operation of the converter and load usage. Voltage unbalance can damage sensitive load and lead to converter accidents. The conditions that may cause voltage unbalance in a bipolar distribution system are as follows. First, three-level AC/DC converters in bipolar distribution systems can lead to voltage unbalance. Second, bipolar distribution systems can be at risk for voltage unbalance because of load usage. In this paper, the output DC link of a three-level AC/DC converter was analyzed for voltage unbalance, and the bipolar voltage was controlled with algorithms. In the case of additional voltage unbalance according to load usage, the bipolar voltage was controlled using the proposed converter. The proposed converter is a dual half-bridge converter, which was improved from the secondary circuit of a dual half-bridge converter. A control algorithm for bipolar voltage control without additional converters was proposed. The balancing control of the bipolar distribution system with distributed power was verified through experiments.

The Influence Of The Cathode Surface State On The Spark Voltage In The Low Pressure Gare Gas (저기압희유 gas중에서 불꽃전압에 미치는 음극표면상태의 영향)

  • 백용현
    • 전기의세계
    • /
    • v.23 no.4
    • /
    • pp.46-52
    • /
    • 1974
  • Generally, it has been regarded that there are two kinds of the effect of the electrodes, especially of the cathode in the gas discharge, (a) the effect caused by the difference of the cathode meterial and (b) the effect by the change of the cathode surface state even in the same meterials. Thus the two effects must be investigated independently to study the roles of the cathode in gas discharges. This paper measured sparking voltage in Rare gas (Ar, He) for the change of sparking voltage in repeating sparks and for the effect of (a) and (b) mentioned above, under the condition that the desorption of impurities from the cathod can be nigligible, and it is obtained that the correlative relations of the work function, sparking voltage and secondary coefficient are comparatively simple. In addition, the interesting character of the minimum point of the paschen's curves is found. The results were as follows; 1) The value of (pd)min with minimum pint of sparking voltage, (Vs)min, is 0.7-0.9 Torr. cm in Argon, but is 5.6-7.1 Torr. cm in Helium, and Paschen's curve in Helium shows slow curve than in Argon. 2) The minimum point of the Paschen's curve is satisfied actually Townsend's self sustaining criterion in Argon, but non-satisfaction in Helium, and the Townsend's secondary coefficient .gamma. action have compound property (.gamma.$_{i}$, .gamma.$_{p}$, .gamma.$_{m}$) in Helium. 3) The dependenting character of work function in Helium is less than in Argon. 4) The minimum point of sparking voltage increase under oxidized electrode than clear electrode in Au and Ag, but minimum point decrease in Ni and Cu.

  • PDF

Isolated Feedback of Inverter DC-Link Voltage Using Flyback Converters (플라이백 컨버터를 이용한 인버터 직류링크 전압의 절연 궤환)

  • Kim, Kyung-Seo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.4
    • /
    • pp.281-285
    • /
    • 2018
  • An isolated feedback method for measuring the inverter DC-link voltage is proposed. This method provides a simple and economical solution to inverter control systems that use a flyback converter as a controller power supply. In the proposed method, data on the DC-link voltage are acquired when the primary side voltage appears on the secondary side of the flyback transformer, thereby eliminating the need to adopt an extra signal isolation method. To solve the non-synchronization problem between the flyback converter switching and main controller sampling, the external interrupt function of the micro-controller is used as a trigger signal for the A/D conversion.