• Title/Summary/Keyword: Secondary bonding

Search Result 118, Processing Time 0.026 seconds

A Comparison Analysis on the Efficiency of Solar Cells of Shingled Structure with Various ECA Materials (다양한 ECA 소재를 활용한 shingled 구조의 태양전지 효율 비교 분석)

  • Jang, Jae Joon;Park, Jeong Eun;Kim, Dong Sik;Choi, Won Seok;Lim, Donggun
    • Journal of the Korean Solar Energy Society
    • /
    • v.39 no.4
    • /
    • pp.1-9
    • /
    • 2019
  • Modules using 6 inch cells have problems with loss due to empty space between cells. To solve this problem made by shingled structure which can generate more power by utilizing empty space by increasing the voltage level than modules made in 6inch cell. Thus, in this paper, the c-Si cutting cells were produced using nanosecond green laser, and then the ECA was sprayed and cured to perform cutting cell bonding. Three types of ECA materials (B1, B2, B3) with Ag as the main component were used, and experimental conditions varied from 5 to 120 seconds of curing time, 130 to $210^{\circ}C$ of curing temperature, and 1 to 3 of curing numbers. As a results of experiments varying curing time, B1 showed efficiency 19.88% in condition of 60 seconds, B2 showed efficiency 20.15% in 90 seconds, and B3 showed efficiency 20.27% in 60 seconds. In addition, experiments with varying curing temperature, It was confirmed highest efficiency that 20.04% in condition of $170^{\circ}C$ with B1, 20.15% in condition of $150^{\circ}C$ with B2, 20.27% in condition of $150^{\circ}C$ with B3. These are because the Ag particles are densely formed on the surface to make the conduction path. After optimizing the conditions of temperature and curing time, the secondary-tertiary curing experiments were carried out. as the structural analysis, conditions of secondary-tertiary curing showed cracks that due to damp heat aging. As a result, it was found that the ECA B3 had the highest efficiency of 20.27% in condition of 60 seconds of curing time, $150^{\circ}C$ of curing temperature, and single number of curing, and that it was suitable for the manufacture of Solar cell of shingled structure rather than ECA B1 and B2 materials.

The Effects of a Thermal Annealing Process in IGZO Thin Film Transistors

  • Kim, Hyeong-Jun;Park, Hyung-Youl;Park, Jin-Hong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.289.2-289.2
    • /
    • 2016
  • In-Ga-Zn-O(IGZO) receive great attention as a channel material for thin film transistors(TFTs) as next-generation display panel backplanes due to its superior electrical and physical properties such as a high mobility, low off-current, high sub-threshold slope, flexibility, and optical transparency. For the purpose of fabricating high performance IGZO TFTs, a thermal recovery process above a temperature of $300^{\circ}C$ is required for recovery or rearrangement of the ionic bonding structure. However diffused metal atoms from source/drain(S/D) electrodes increase the channel conductivity through the oxidation of diffused atoms and reduction of $In_2O_3$ during the thermal recovery process. Threshold voltage ($V_{TH}$) shift, one of the electrical instability, restricts actual applications of IGZO TFTs. Therefore, additional investigation of the electrical stability of IGZO TFTs is required. In this paper, we demonstrate the effect of Ti diffusion and modulation of interface traps by carrying out an annealing process on IGZO. In order to investigate the effect of diffused Ti atoms from the S/D electrode, we use secondary ion mass spectroscopy (SIMS), X-ray photoelectron spectroscopy, HSC chemistry simulation, and electrical measurements. By thermal annealing process, we demonstrate VTH shift as a function of the channel length and the gate stress. Furthermore, we enhance the electrical stability of the IGZO TFTs through a second thermal annealing process performed at temperature $50^{\circ}C$ lower than the first annealing step to diffuse Ti atoms in the lateral direction with minimal effects on the channel conductivity.

  • PDF

Proton implantation mechanism involved in the fabrication of SOI wafer by ion-cut process (Ion-cut에 의한 SOI웨이퍼 제조에서의 양성자조사기구)

  • 우형주;최한우;김준곤;지영용
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • The SOI wafer fabrication technique has been developed by using ion-cut process, based on proton implantation and wafer bonding techniques. It has been shown by TRIM simulation that 65 keV proton implantation is required for the standard SOI wafer (200 nm SOI, 400 nm BOX) fabrication. In order to investigate the optimum proton dose and primary annealing condition for wafer splitting, the surface morphologic change has been observed such as blistering and flaking. As a result, effective dose is found to be in the 6∼$9\times10^{16}$ $H^{+}/\textrm{cm}^2$ range, and the annealing at $550^{\circ}C$ for 30 minutes is expected to be optimum for wafer splitting. The depth distribution of implanted hydrogen has been experimentally confirmed by ERD and SIMS measurements. The microstructure evolution in the damaged layer was also studied by X-TEM analysis.

A Study on the Fracture Behavior of Composite Laminated T-Joints Using AE (AE를 이용한 복합재료 T 조인트부의 파괴거동에 관한 연구)

  • Kim, J.H.;Ahn, B.W.;Sa, J.W.;Park, B.J.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.4
    • /
    • pp.277-287
    • /
    • 1999
  • Quasi-static tests such as monotonic tension and loading/unloading tension were performed to investigate the bond characteristics and the failure processes for the T-joint specimens made from fiber/epoxy composite material. Two types of specimens, each consists of two components, e. g. skin and frame. were manufactured by co-curing and secondary bonding. During the monotonic tension test, AE instrument was used to predict AE signal at the initial and middle stage of the damage propagation. The damage initiation and progression were monitored optically using m (Charge Coupled Device) camera. And the internal crack front profile was examined using ultrasonic C-scan. The results indicate that the loads representing the abrupt increase of the AE signal are within the error range of 5 percent comparing to the loads shown in the load-time curve. Also it is shown that the initiation of crack occurred in the noodle region for both co-cured and secondarily bonded specimen. The final failure occurred in the noodle region for the co-cured specimen. but at the skin/frame termination point for the secondarily bonded specimen. Based on the results, it was found that two kinds of specimen show different failure modes depending on the manufacturing methods.

  • PDF

Application of DBD Plasma Catalysis Hybrid Process to remove Organic Acids in Odors (악취물질인 유기산 제거를 위한 DBD 플라즈마 촉매 복합공정의 적용)

  • Hong, Eun-Gi;Suh, Jeong-Min;Choi, Kum-Chan
    • Journal of Environmental Science International
    • /
    • v.23 no.9
    • /
    • pp.1627-1634
    • /
    • 2014
  • Odor control technology include absorption, adsorption, incineration and biological treatments. But, most of processes have some problems such as secondary organic acids discharge at the final odor treatment facility. In order to solve the problems for effective treatment of organic acids in odor, it is necessary to develop a new type advanced odor control technology. Some of the technology are plasma only process and plasma hybrid process as key process of the advanced technology. In this study, odor removal performance was compared DBD(Dielectric Barrier Discharge)plasma process with PCHP(plasma catalysis hybrid process) by gaseous ammonia, formaldehyde and acetic acid. Plasma only process by acetic acid obtained higher treatment efficiency above 90%, and PCHP reached its efficiency up to 96%. Acetic acid is relatively easy pollutant to control its concentration other than sulfur and nitrogen odor compounds, because it has tendency to react with water quickly. To test of the performance of DBD plasma process by applied voltage, the tests were conducted to find the dependence of experimental conditions of the applied voltage at 13 kV and 15 kV separately. With an applied voltage at 15 kV, the treatment efficiency was achieved to more higher than 13 kV from 83% to 99% on ammonia, formaldehyde and acetic acid. It seems to the odor treatment efficiency depends on the applied voltage, temperature, humidity and chemical bonding of odors.

Early complications and performance of 327 heat-pressed lithium disilicate crowns up to five years

  • Huettig, Fabian;Gehrke, Ulf Peter
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.3
    • /
    • pp.194-200
    • /
    • 2016
  • PURPOSE. The prospective follow-up aimed to assess the performance of lithium disilicate crowns and clinical reasons of adverse events compromising survival and quality. MATERIALS AND METHODS. 58 patients were treated with 375 heat-pressed monolithic crowns, which were bonded with resin cement. Annual recalls up to five years included a complete dental examination as well as quality assessment using CDA-criteria. Any need for clinical intervention led to higher complication rate and any failure compromised the survival rate. Kaplan-Meier-method was applied to all crowns and a dataset containing one randomly selected crown from each patient. RESULTS. Due to drop-outs, 45 patients (31 females, 14 males) with the average age of 43 years (range = 17-73) who had 327 crowns (176 anterior, 151 posterior; 203 upper jaw, 124 lower jaw) were observed and evaluated for between 4 and 51 months (median = 28). Observation revealed 4 chippings, 3 losses of retention, 3 fractures, 3 secondary caries, 1 endodontic problem, and 1 tooth fracture. Four crowns had to be removed. Survival and complication rate was estimated 98.2% and 5.4% at 24 months, and 96.8% and 7.1% at 48 months. The complication rate was significantly higher for root canal treated teeth (12%, P<.01) at 24 months. At the last observation, over 90% of all crowns showed excellent ratings (CDA-rating Alfa) for color, marginal fit, and caries. CONCLUSION. Heat pressed lithium disilicate crowns showed an excellent performance. Besides a careful luting, dentists should be aware of patients' biological prerequisites (grade of caries, oral hygiene) to reach full success with these crowns.

Clinical performance and failures of zirconia-based fixed partial dentures: a review literature

  • Triwatana, Premwara;Nagaviroj, Noppavan;Tulapornchai, Chantana
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.2
    • /
    • pp.76-83
    • /
    • 2012
  • PURPOSE. Zirconia has been used in clinical dentistry for approximately a decade, and there have been several reports regarding the clinical performance and survival rates of zirconia-based restorations. The aim of this article was to review the literatures published from 2000 to 2010 regarding the clinical performance and the causes of failure of zirconia fixed partial dentures (FPDs). MATERIALS AND METHODS. An electronic search of English peer-reviewed dental literatures was performed through PubMed to obtain all the clinical studies focused on the performance of the zirconia FPDs. The electronic search was supplemented by manual searching through the references of the selected articles for possible inclusion of some articles. Randomized controlled clinical trials, longitudinal prospective and retrospective cohort studies were the focuses of this review. Articles that did not focus on the restoration of teeth using zirconia-based restorations were excluded from this review. RESULTS. There have been three studies for the study of zirconia single crowns. The clinical outcome was satisfactory (acceptable) according to the CDA evaluation. There have been 14 studies for the study of zirconia FPDs. The survival rates of zirconia anterior and posterior FPDs ranged between 73.9% - 100% after 2 - 5 years. The causes of failure were veneer fracture, ceramic core fracture, abutment tooth fracture, secondary caries, and restoration dislodgment. CONCLUSION. The overall performance of zirconia FPDs was satisfactory according to either USPHS criteria or CDA evaluations. Fracture resistance of core and veneering ceramics, bonding between core and veneering materials, and marginal discrepancy of zirconia-based restorations were discussed as the causes of failure. Because of its repeated occurrence in many studies, future researches are essentially required to clarify this problem and to reduce the fracture incident.

Structural Basis for Recognition of L-lysine, L-ornithine, and L-2,4-diamino Butyric Acid by Lysine Cyclodeaminase

  • Min, Kyungjin;Yoon, Hye-Jin;Matsuura, Atsushi;Kim, Yong Hwan;Lee, Hyung Ho
    • Molecules and Cells
    • /
    • v.41 no.4
    • /
    • pp.331-341
    • /
    • 2018
  • L-pipecolic acid is a non-protein amino acid commonly found in plants, animals, and microorganisms. It is a well-known precursor to numerous microbial secondary metabolites and pharmaceuticals, including anticancer agents, immunosuppressants, and several antibiotics. Lysine cyclodeaminase (LCD) catalyzes ${\beta}$-deamination of L-lysine into L-pipecolic acid using ${\beta}$-nicotinamide adenine dinucleotide as a cofactor. Expression of a human homolog of LCD, ${\mu}$-crystallin, is elevated in prostate cancer patients. To understand the structural features and catalytic mechanisms of LCD, we determined the crystal structures of Streptomyces pristinaespiralis LCD (SpLCD) in (i) a binary complex with $NAD^+$, (ii) a ternary complex with $NAD^+$ and L-pipecolic acid, (iii) a ternary complex with $NAD^+$ and L-proline, and (iv) a ternary complex with $NAD^+$ and L-2,4-diamino butyric acid. The overall structure of SpLCD was similar to that of ornithine cyclodeaminase from Pseudomonas putida. In addition, SpLCD recognized L-lysine, L-ornithine, and L-2,4-diamino butyric acid despite differences in the active site, including differences in hydrogen bonding by Asp236, which corresponds with Asp228 from Pseudomonas putida ornithine cyclodeaminase. The substrate binding pocket of SpLCD allowed substrates smaller than lysine to bind, thus enabling binding to ornithine and L-2,4-diamino butyric acid. Our structural and biochemical data facilitate a detailed understanding of substrate and product recognition, thus providing evidence for a reaction mechanism for SpLCD. The proposed mechanism is unusual in that $NAD^+$ is initially converted into NADH and then reverted back into $NAD^+$ at a late stage of the reaction.

Plywood Properties by PEG Treatment Conditions on Veneer (단판(單板)의 PEG 처리조건(處理條件)에 따른 합판(合板)의 성질(性質))

  • Suh, Jin-Suk;Doh, Geum-Hyun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.20-25
    • /
    • 1989
  • This study was carried out in order to investigate the treatment effect of PEG soln which is a common dimensional stabilizer to green log. sawing panel etc, on bonding product including plywood widely-used in secondary processing unit. The 30% concentration of aqueous PEG soln. with molecular weight of 400, 1.000 and 4,000 were prepared respectively, and also dipping the veneer in the PEG soln. spreading the PEG soln. on veneer and mixing the PEG soln. in the adhesive were allowed. Then the ratio of PEG impregnation on veneer, the adhesive strength of plywood were epitomized as follows: The ratio of impregnation by PEG 4,000 at dipping condition was highest. while that by PEG 400 at same condition was lowest. However, the effect of PEG molecular weight on the ratio of impregnation at spreading condition did not occur. 2. The adhesive strength was great in the order of 4,000>400>1,000 in molecular weight of PEG at dipping and spreading conditions. In case of mixing the PEG soln. in the adhesive, the adhesive strength was great in the order of 400>1,000>4,000 in molecular weight of PEG. Throughout three treatment conditions, PEG 400 was relatively favourable with about 10kg/$cm^2$ dry strength. 3. The adhesive strength was great 10 the order of spreading >dipping >mixing condition. 4. Although adhesive strength with the 30% concentration of aqueous PEG soln. was decreased by 35% and over, compared to control (non-treatment) adhesive strength, all types of PEG treatment except mixing the PEG soln. in the adhesive exceeded the standard dry strength for common use panel. 7.5kg/$cm^2$. 5. In warm water-proof test, the adhesive strengths by all PEG treatment conditions were less than the standard wet strength, 7.5kg cot, and also delamination of glue line occured mostly in mixing in the PEG soln. in the adhesive condition.

  • PDF

Dyeing of Silk Fabric with Aqueous Extract of Cassia tora L. Seed - focusing on the mordanting and dyeing mechanisms - (결명자 색소 추출액에 의한 견직물 염색 -매염 및 염착 mechanism을 중심으로-)

  • Dho Seong Kook;Kang In A
    • Textile Coloration and Finishing
    • /
    • v.17 no.2 s.81
    • /
    • pp.10-18
    • /
    • 2005
  • Silk fabrics mordanted with $Fe^{2+},\;Ni^{2+},\;and\;Cu^{2+}$ were dyed with the aqueous extract of Cassia tora L. seed which was known to include water soluble colorant kaempferol, one of flavonol compounds. Kaempferol can react with free radicals and chelate transition metal ions, which is thought to catalyze processes leading to the appearance of free radicals and have antioxidant activity. In relation to the coordinating and chelating mechanism of the ions with the silk protein and kaempferol, reasonable conclusions should be made on the colorant uptake and the water fastness of the fabric. The amount of the colorant on the fabric was in the order of $Fe^{2+}>Ni^{2+}>Cu^{2+}$. In case of dyeing through coordinaiton bonds between transition metal ions and silk protein and colorants, it was thought that the ions with the smaller secondary hydration shell, the higher preference to the atoms of the ligand coordinated, and the suitable bonding stability for the substitution of primarily hydrated water molecules for colorants led to the higher colorant uptake. The water fastnsess of the fabric was in the order of $Fe^{2+}>Cu^{2+}>Ni^{2+}$. It should be reasonable to choose transition metal ions with weak and strong tendency to the ionic and the coordination bond, respectively, to the carboxylate anion of the silk protein. Although further research needs to be done, the conclusions above may be generally applied to the natural dyeing through the coordination bond mechanism between transition metal ions and colorants and substrates.