• Title/Summary/Keyword: Secondary batteries

Search Result 389, Processing Time 0.025 seconds

Electrochemical Performance of Li4Ti5O12 Particles Manufactured Using High Pressure Synthesis Process for Lithium Ion Battery (초고압 합성법으로 제조한 리튬이온전지 음극활물질 Li4Ti5O12의 전기화학적 특성)

  • Ji, Sung Hwa;Jo, Wan Taek;Kim, Hyun Hyo;Kim, Hyojin
    • Korean Journal of Materials Research
    • /
    • v.28 no.6
    • /
    • pp.337-342
    • /
    • 2018
  • Using a high pressure homonizer, we report on the electrochemical performance of $Li_4Ti_5O_{12}(LTO)$ particles manufactured as anode active material for lithium ion battery. High-pressure synthesis processing is performed under conditions in which the mole fraction of Li/Ti is 0.9, the synthesis pressure is 2,000 bar and the numbers of passings-through are 5, 7 and 10. The observed X-ray diffraction patterns show that pure LTO is manufactured when the number of passings-through is 10. It is found from scanning electron microscopy analysis that the average size of synthesized particles decreases as the number of passings-through increases. $LiCoO_2-based$ active cathode materials are used to fabricate several coin half/full cells and their battery characteristics such as lifetime, rate capability and charge transfer resistance are then estimated, revealing quite good electrochemical performance of the LTO particles as an effective anode active material for lithium secondary batteries.

Growth and Resistance Properties of Carbon Nanowall According to the Variation of Reaction Gas (반응가스의 변화에 따른 탄소나노월의 성장 및 저항 특성)

  • Kim, Sung Yun;Lee, Sangjoon;Choi, Won Seok;Joung, Yeun-Ho;Lim, Dong-Gun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.4
    • /
    • pp.217-220
    • /
    • 2014
  • Graphite electrodes are used for secondary batteries, fuel cells, and super capacitors. Research is underway to increase the reaction area of graphite electrodes. In this study, we have investigated the growth properties of carbon nanowall (CNW) according to the ingredient of gas. Microwave plasma enhanced chemical vapor deposition (MPECVD) system was used to grow CNW on Si substrate with a variety of the reaction gas. The planar and vertical growth conditions of the grown CNWs according to the ingredient of the gas were characterized by a field emission scanning electron microscopy (FE-SEM) and energy dispersive spectroscopy (EDS). The electrical characteristics of CNWs were analyzed using a 4-point probe.

The study on Fabrication and Characterization of $LiMn_{2-x}Cu_{x}O_{4}$for cathode material of Lithium-ion Battery (리튬이온 이차전지 양극활물질 $LiMn_{2-x}Cu_{x}O_{4}$의 제작과 전극특성에 관한 연구)

  • 박종광;고건문;홍세은;윤기웅;안용호;한병성
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.713-716
    • /
    • 2001
  • In many papers, the electrochemical analysis of LiMn$_2$O$_4$shows the transition results of Mn$^{3+}$ ion. Charge ordering is accompanied by simultaneous orbital ordering due to the Jahn-Teller effect in Mnl$^{3+}$ ions. To analyze the cycle performance of LiMn$_{2-x}$Cu$_{x}$ O$_4$as the cathode of 4 V class lithium secondary batteries, XRD, TGA analysis were conducted. Although the cycle performance of the LiMn$_{2-x}$Cu$_{x}$ O$_4$was improved from pure LiMn$_2$O$_4$, the discharge capacity was significantly lower than LiCoO$_2$. In this paper, We study the Electrochemical characterization and enhanced stability of Cu-doped spinels in the LiMn$_{2-x}$Cu$_{x}$ O$_4$upon initial cycling.l cycling.

  • PDF

Electrochemical Properties of $LiFePO_4-LiCoO_2$ Cathode Materials in Lithium Secondary Batteries (리튬이차전지 정극활물질용 $LiFePO_4-LiCoO_2$의 전기화학적 특성)

  • Kong, Ming-Zhe;Kim, Hyun-Soo;Kim, Ke-Tack
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.241-242
    • /
    • 2006
  • In this work, the $LiFePO_4-LiCoO_2$ mixed cathode electrodes were prepared and their electrochemical performances were measured in different current density. The cell of $LiFePO_4-LiCoO_2$ observed two voltage plateau regions at 3.4 and 3.9V. The cell of $LiFePO_4-LiCoO_2$ (90:10 wt%) mixed cathode delivered a discharge capacity of ca. 139.8 mAh/g at a 0.2C rate. The capacity of the cell decreased with the current rate and a useful capacity of ca 85.7mAh/g was obtained at a 2C rate.

  • PDF

PWM Variable Carrier Generating Method for OEW PMSM with Dual Inverter and Current Ripple Analysis according to Zero Vector Position (듀얼 인버터 개방 권선형 영구자석 동기 전동기 제어를 위한 PWM 가변 캐리어 생성법 및 영벡터 위치에 따른 전류 리플 분석)

  • Shim, Jae-Hoon;Choi, Hyeon-Gyu;Ha, Jung-Ik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.279-285
    • /
    • 2020
  • An open-end winding (OEW) permanent magnet synchronous motor with dual inverters can synthesize large voltages for a motor with the same DC link voltage. This ability has the advantage of reducing the use of DC/DC boost converters or high voltage batteries. However, zero-sequence voltage (ZSV), which is caused by the difference in the combined voltage between the primary and secondary inverters, can generate a zero-sequence current (ZSC) that increases system losses. Among the methods for eliminating this phenomenon, combining voltage vector eliminated ZSV cannot be accomplished by the conventional Pulse Width Modulation(PWM) method. In this study, a PWM carrier generation method using functionalization to generate a switching pattern to suppress ZSC is proposed and applied to analyze the control influence of the center-zero vector in the switching sequence about the current ripple.

Numerical Simulation for a Multi-Stage Deep Drawing of Anisotropic SUS409L Sheet into a Rectangular Cup (초기 이방성 SUS409L 박판재의 직사각 컵 성형을 위한 다단 디프드로잉 공정 적용에 관한 수치적 연구)

  • Park, J.W.;Ku, T.W.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.22 no.3
    • /
    • pp.133-142
    • /
    • 2013
  • Recently, electric vehicles and hybrid cars are being promoted as alternatives to reduce automobile emissions. Generally, thin sheet materials such as aluminum alloy AA300X and cold-rolled steel sheet such as JIS-G-3141 are used for the container for the lithium-ion secondary batteries. In this study, a multi-stage deep drawing process is used to produce a rectangular cup from thin stainless steel sheet material, SUS409L, with an initial blank thickness of 0.4mm for the battery container application. Numerical simulations of the first through the fifth stages for the multi-stage deep drawing with thin SUS409L sheet were conducted using LS-Dyna3D Implicit/Explicit. Special consideration was given to the deformation characteristics due to the normal anisotropy of the sheet material. The numerical simulations were conducted with both isotropic properties and the anisotropic properties of the initial blank material. An unexpected forming failure, barreling in the bottom region of the deep drawn rectangular cup, was observed. This failure mode can be avoided by additional ironing thickness control during the process.

Variable Output and Parallel Operation Control of EV Charger (전기자동차용 충전기의 가변출력 및 병렬운전 제어)

  • Lee, Sang-Hyeok;Kang, Seong-Gu;Awasthi, Prakash;Hwang, Jung-Goo;Lee, Seung-Yul;Wi, Han-Byul;Park, Sung-Jun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.153-160
    • /
    • 2013
  • This research paper describes the development of battery charger with a variable output voltage capacity for charging the batteries used in electrical vehicles. The voltage and current accordingly is control via the buck converter that receives three phase current at primary side and fed to bridge rectifier which is comprised of full bridge converter and HFTR(High Frequency Transformer) for isolation and a square wave AC output. The transformer primary side is in series to divide certain charging current and the secondary side is comprised of six fix transformers so that they can generate certain amount of power and various output voltage through relay connection using 6 DC outputs. Moreover, all parallel connected full bridge serial resonant converter communicate together with upper(main) controller. The constructed structure is verified by conducting the test on PSIM as well as experimentally.

Electrochemical Properties and Estimation on Active Material LiMnO2 Synthesis for Secondary

  • Wee, Sung-Dong;Kim, Jong-Uk;Gu, Hal-Bon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.2
    • /
    • pp.35-39
    • /
    • 2003
  • This paper is contents on the orthorhombic crystalline calcined by the solid phase method with LiMnO$_2$ thin film structured as the result which an average pore diameter of power was 132.3${\AA}$ in porosity analysis. Voltage ranges are able to get the properties of charge and discharge for experimental results of LiMnO$_2$ thin film were 2.2V 4.3V. The current density and scan speed were 0. 1㎃/$\textrm{cm}^2$ and 0.2㎷/sec respectively. Properties of the charge and discharge are obtained by optimum experiment condition parameters. Li dense ratio of the LiMnO$_2$ thin film that discharged capacities were 87㎃h/g have been 96.9[ppm] at 670.784[nm] wavelength. The dense ratio of Mn analyzed to 837[ppm] at 257.610[nm] wavelength. It can be estimated the quality of the LiMnO$_2$ thin film as that the wrong LiMnO$_2$ thin film pulled up from cell of electrolyte and became dry it at 800$^{\circ}C$. The results of SEM and XRD were the same as that of original researchers.

New Separators Based on Non-Polyolefin Polymers for Secondary Lithium Batteries

  • Seol, Wan-Ho;Lee, Yong-Min;Lee, Jun-Young;Han, Young-Dal;Ryu, Myung-Hyun;Park, Jung-Ki
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.82-87
    • /
    • 2007
  • New porous separators based on non-polyolefin materials including the blend of poly (vinyl chloride) (PVC)/poly (vinylidene fluoride-co-hexafluoropropylene) (P(VdF-co-HFP)/poly(methyl methacrylate) (PMMA), and the porous separator based on poly (vinylidene fluoride) (PVdF) were prepared by phase inversion method. The porosity and morphology were controlled with phase inversion rate, which is governed by the relative content of non-solvent and solvent in coagulation bath. To enhance tensile strength, the solvent pre-evaporation and uni-axial stretching processes were applied. The ionic conductivity was increased with increasing stretching ratio, and tensile strength was increased with increasing solvent pre-evaporation time and stretching ratio. The 200% stretched PVdF separator showed 56 MPa of tensile strength, and the ionic conductivity of the stretched PVdF separator was $8.6{\times}10^{-4}\;S\;cm^{-1}\;at\;25^{\circ}C$.

A Study on the Electrochemical Characteristics of Hydrogen Storage Alloy Electrodes for Secondary Batteries (축전지용 수소저장합금 전극의 전기화학적 특성에 관한 연구)

  • KIM, Chan-Jung;LEE, Jae-Myoung;CHOI, Byung-Jin;KIM, Dai-Ryong
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.4 no.2
    • /
    • pp.29-40
    • /
    • 1993
  • Intensive studies on the electrochemical characteristics of TiFe type alloy electrodes have been carried out to clarify the mechanism of electrochemical hydrogen absorption and desorption. It was found that electrochemical activation of the TiFe type alloys is difficult and that charge efficiencies are very low even after a decade of activation cycles. However, by the pretreatment of the powders such as gas activation and/or Ni chemical plating, charge efficiencies fairly increased, especially for the $TiFe_{0.8}Ni_{0.2}$ alloy. It was considered that difficulties to activation and lower charge efficies of the alloys are due to the presence of the passivation films, which prohibit inward diffusion of hydrogen and promote the combination of adsorbed hydrogen atom to gas bubbles during the electrochemical charge. In addition, lower diffusivity of hydrogen in the alloys may be played an important role lowering the charge efficiencies.

  • PDF