• Title/Summary/Keyword: Secondary aliphatic amines

Search Result 12, Processing Time 0.027 seconds

Ion Pair Extraction of Aliphatic Amines and Quaternary Ammonium Salts by Picric Acid (Picric Acid에 의한 지방족 아민류와 4급 암모늄 염류의 이온쌍 추출)

  • 김박광;이종숙;장성기;나운용;옥치환
    • YAKHAK HOEJI
    • /
    • v.35 no.3
    • /
    • pp.182-189
    • /
    • 1991
  • Systematic study on the extraction of ion pair by the use of picric acid (PCA) as an ion pair forming reagent to the aliphatic amines has not be done by spectrophotometric method. The extraction of ion pair by the use of PCA and 23 kinds of the aliphatic amines was examined. The procedure is as follows; Elving's buffer solution (pH 1.3~10, ionic strength 0.5) each amine solution, and PCA solution were taken into a test tube. The mixture was shaken mechanically with chlorform. The organic phase was filtered through a filter paper to remove water droplets. The absorbance was examined at $\lambda_{max}$ against a reagent blank. Primary and secondary whose carbon number were more than 7 or 6, respectively, are extractable as ion pairs with PCA, while tertiary amines and quaternary ammonium salts are also extractable without the correlation of carbon number. It was considered that the ion pair extraction of primary and secondary amines was affected by the number of carbon of amines, but its extraction of tertiary amines or quaternary ammonium salts was affected by kind of aliphatic amines rather than pKa values or carbon number of amines.

  • PDF

The Facile Synthesis of Pentane-1, 5-diamines from Glutaraldehyde and Secondary Amines with Tetracarbonylhydridoferrate

  • Shim Sang Chul;Watanabe Yoshihisa
    • Bulletin of the Korean Chemical Society
    • /
    • v.3 no.2
    • /
    • pp.76-78
    • /
    • 1982
  • Ethanolic tetracarbonylhydridoferrate solution combined with glutaraldehyde is a very effective reducing agent for the selective transformation of two moles of secondary amines into pentane-1,5-diamine derivatives. A variety of aliphatic secondary amines react with ferrate-glutaraldehyde at room temperature under carbon monoxide to give the corresponding N-substituted pentane-1,5-diamines in reasonable yields.

The Determination of Methyl Isocyanate in the Workplace by Gas Chromatography with Flame Ionization Detector (GC/FID에 의한 작업환경중 메틸 이소시아네이트의 분석)

  • Lee, Eun Jung;Yoo, Chul;Han, Young Sun;Cho, Young Bong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.11 no.3
    • /
    • pp.249-253
    • /
    • 2001
  • The purpose of this study is the development of the simple and precise sampling and analysis method of methyl isocyanate(MIC) in the work place as their secondary aliphatic amine derivatives by gas chromatography with flame ionization detector. The urea derivatives are quantitatively and simultaneously derived from MIC with secondary aliphatic amines such as dipropylamine(DPA), dibutylamine(DBA), and dipentylamine (DAA) in methylene chloride. The method is based on sampling glass tube in XAD-2 resin which is coated with secondary aliphatic amines. The samples are desorbed by $2m{\ell}$ methylene chloride and analysed using gas chromatography with flame ionization detector(GC/FID). In the results, the detection limit of the overall procedure and reliable quantity are $0.020-0.027{\mu}g$($1.347-1.740{\mu}g/m^3$(0.529-0.684 ppb) based on a 15 L air volume) MIC per sample. The average desorption efficiencies are 97.96 - 101.23 %. The results of versus storage time are high and stable recovery rates.

  • PDF

The Determination of Ethyl Isocyanate and Propyl Isocyanate by GC/FID (에틸 이소시아네이트와 프로필 이소시아네이트의 GC/FID 분석)

  • Lee, Eun-Jung;Yoo, Chul;Choi, Hong-Soon;Park, Jun-Ho;Yoon, Ju-Song;Cho, Young-Bong
    • Environmental Analysis Health and Toxicology
    • /
    • v.15 no.1_2
    • /
    • pp.53-59
    • /
    • 2000
  • The purpose of this study is the development of the simple and precise determination method of ethyl isocyanate (EIC) and propyl isocyanate (PIC) through derivatization using secondary aliphatic amines by gas chromatography with flame ionization detector. The urea derivatives are quantitatively and simultaneously derived from EIC and PIC with secondary aliphatic amines such as dipropylamine, dibutylamine. and dipentylamine in methylene chloride, and confirmed by thin layer chromatography and gas chromatography with mass selective detector. For GC/FID, according to the increasing carbon atom of the amines, the retention time and peak area of the urea derivatives are increased. The instrumental detection limits for EIC and PIC were about 23.3∼34.8 $\mu\textrm{g}$ and 21.6∼28.9 $\mu\textrm{g}$, respectively.

  • PDF

Syntheses and Central Nervous Depressant Activities of Piperine Derivatives (V) (피페린 유도체의 합성 및 중추 억제작용에 관한 연구(V) -Methylenedioxyphenylalkenoic Acid Amide 유도체-)

  • 도경삼;임중기;우경식;이은방
    • YAKHAK HOEJI
    • /
    • v.30 no.4
    • /
    • pp.163-168
    • /
    • 1986
  • Thirteen compounds were synthesized by condensing the N-heterocyclic amines (piperidine, pyrrolidine, morpholine) and secondary aliphatic amines (dimethylamine, diethylamine) with 3,4-methylenedioxyphenylalkenoic acid chlorides for developing CNS depressants. Among them, N, N-diethyl-3,4-methylenedioxycinnamamide (IX) and N, N-dimethyl-5-(3,4-methylenedioxyphenyl)-2, 4-pentadienoic acid amicle (XII) exhibited strong activity in antagonism against pentylenetetrazole-induced convulsion, strychnine-induced convulsion and maximal electroshock seizure. N, N-Dimethyl-3, 4-methylenedioxycinnamide (VIII) showed more potent activity in antagonism against strychnine-induced convulsion and maximal electroshock seizure and in the prolongation of hexobarbital sleeping time.

  • PDF

Selective Oxidation of Amines to Imines or Nitriles by Manganese Dioxide in Air (공기 중에서 망간 다이옥사이드에 의한 아민에서 이민 또는 나이트릴로의 선택적 산화 반응)

  • Kim, Yo Han;Hwang, Seung Kyu;Lee, Yoon Sik;Kim, Jung Won
    • Applied Chemistry for Engineering
    • /
    • v.25 no.2
    • /
    • pp.215-221
    • /
    • 2014
  • A simple heterogeneous system has been developed by using base treated manganese dioxide (B-$MnO_2$) for the aerobic oxidation of amines under mild reaction conditions of 1 atm of air and $50^{\circ}C$ in hexane. This system was highly efficient to oxidize various kinds of primary or secondary amines including aliphatic, aromatic, and hetero-atomic ones under the applied reaction conditions. Amines were oxidized to nitriles or diimines by the self-condensation or oxidative dehydrogenation through imine intermediate. The B-$MnO_2$ was reused for at least 5 times without any loss of its catalytic performance and showed its cost effectiveness, easy workup, and easy separation of the products for achieving the protocol of green chemistry.

Extraction of Acetic Acid by Aliphatic Amino Extractants (지방족 아민 추출제에 의한 초산의 추출)

  • Lee, Han-Seob
    • Applied Chemistry for Engineering
    • /
    • v.5 no.1
    • /
    • pp.121-126
    • /
    • 1994
  • To elucidate the effect on the reactive extraction of acetic acid, various carriers and modifiers were investigated. Carriers used were secondary and tertiary amines and solvation extractant. Diluent was n-butylacetate. Modifiers were 4-nonylphenol, TBP(Tti-n-butyl phospate) and isodecanol. Besides the effect of temperature and pH in aqueous phase were studied. The mixture of 50% tri-n-octyl/n-decylamine tertiary amine, gave higher degree of extraction and selectivity than other extractants in the extraction of acetic acid. It was found that 4-nonylphenol as modifier fairly good. The degree of extraction was higher with decreasing the pH in aquous phase and the temperature of extraction system.

  • PDF

Determination of secondary aliphatic amines in surface and tap waters as benzenesulfonamide derivatives using GC-MS (Benzenesulfonamide 유도체로 GC-MS를 사용한 지표수 및 수돗물 중 2차 지방족 아민의 분석)

  • Park, Sunyoung;Jung, Sungjin;Kim, Yunjeong;Kim, Hekap
    • Analytical Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.96-105
    • /
    • 2018
  • This study aimed to improve the method for detecting eight secondary aliphatic amines (SAAs), so as to measure their concentrations in fresh water and tap water samples. NaOH (8 mL, 10 M) and benzenesulfonyl chloride (2 mL) were added to a water sample (200 mL), and the mixture was stirred at $80^{\circ}C$ for 30 min. An additional NaOH solution (10 mL) was added and the stirring was continued for another 30 min. The pH of the cooled mixture was adjusted to 5.5-6.0 by adding HCl (35 %), and the SAAs were extracted using dichloromethane (50 mL). This extraction was repeated once. The extract was then washed with $NaHCO_3$ (15 mL, 0.05 M) and dried over $Na_2SO_4$ (4 g). The extract was finally concentrated to 0.1 mL, of which $1{\mu}L$ was analyzed for SAAs by GC-MS. The linearity of the spike calibration curves was high ($r^2=0.9969-0.9996$). The detection limits of the method ranged from 0.01 to $0.20{\mu}g/L$, and its repeatability and reproducibility (expressed as relative standard deviation) were both less than 10 % (6.6-9.4 %). Its accuracy (measured in percentage error) ranged between 2.4 % and 6.1 %. The established method was applied to the analysis of five surface water and 82 tap water samples. Dimethylamine was the only SAA detected in all the water samples, and its average concentration was $0.79{\mu}g/L$ (range: $0.20-2.54{\mu}g/L$). Therefore, this study improved the analytical method for SAAs in surface water and tap water, and the regional and seasonal concentration distributions were obtained.

Study on Characterization of Hydrophilic and Hydrophobic Fractions of Water-soluble Organic Carbon with a XAD Resin (XAD 수지에 의한 친수성 및 소수성 수용성 유기탄소의 특성조사)

  • Jeong, Jae-Uk;Kim, Ja-Hyun;Park, Seung-Shik;Moon, Kwang-Joo;Lee, Seok-Jo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.3
    • /
    • pp.337-346
    • /
    • 2011
  • 24-hr integrated measurements of water-soluble organic carbon (WSOC) in PM2.5 were made between May 5 and September 25, 2010, on a six-day interval basis, at the Metropolitan Area Air Pollution Monitoring Supersite. A macro-porous XAD7HP resin was used to separate hydrophilic and hydrophobic WSOC. Compounds that penetrate the XAD7HP column are referred to hydrophilic WSOC, while those retained by the column are defined as hydrophobic WSOC. Laboratory calibrations using organic standards suggest that hydrophilic WSOC includes lowmolecular aliphatic dicarboxylic acids and carbonyls with less than 4 or 5 carbons, amines, and saccharides. While the hydrophobic WSOC is composed of compounds of aliphatic dicarboxylic acids with carbon numbers larger than 4~5, phenols, aromatic acids, cyclic acid, and humic-like Suwannee River fulvic acid. Over the entire study period, total WSOC accounted for on average 48% of OC, ranging from 32 to 65%, and hydrophilic WSOC accounted for on average 30.5% (9.3~66.7%) of the total WSOC. Based on the previous results, our measurement result suggests that significant amounts of hydrophobic WSOC during the study period were probably from primary combustion sources. However, on June 9 when 1-hr highest ozone concentration of 130 ppb was observed, WSOC to OC was 0.61, driven by increases in the hydrophilic WSOC. This result also suggests that processes, such as secondary organic aerosol formation, produce significant levels of hydrophilic WSOC compounds that add substantially to the fine particle fraction of the organic aerosol.