• Title/Summary/Keyword: Secondary Strand

Search Result 26, Processing Time 0.031 seconds

Secondary Structure for RNA Aptamers Binding to Guanine-Rich Sequence in the 5'-UTR RNA of N-Ras Oncogene

  • Cho, Bongrae
    • Journal of the Korean Chemical Society
    • /
    • v.65 no.2
    • /
    • pp.121-124
    • /
    • 2021
  • RNA molecules which bind to the G-rich sequence in the 5'-UTR RNA which plays an important role in expression of N-ras, were selected. The secondary structures of five selected RNA aptamers including primer sequence were found by the CLC RNA workbench ver. 4.2 program (www.clcbio.com) and investigated with RNA structural probes such as RNase T1 which has specificity for a G in single-stranded region, RNase V1 specific for double strand and nuclease S1 specific for single strand. The generalized secondary structure model was proposed and characterized. It was composed of a central long double strand region flanked by single strand region at both end sides. The double strand region had an internal single-strand region and bulges. The single strand loop in the right side was composed of four or five nucleotides.

Joint Interactions of SSB with RecA Protein on Single-Stranded DNA

  • Kim, Jong-Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.562-567
    • /
    • 1999
  • Single-stranded DNA binding protein (SSB) is well-characterized as having a helix-destabilizing activity. The helix-destabilizing capability of SSB has been re-examined in this study. The results of restriction endonuclease protection assays and titration experiments suggest that the stimulatory effect of SSB on strand exchange acts by melting out the secondary structure which is inaccessible to RecA protein binding; however, SSB is excluded from regions of secondary structure present in native single-stranded DNA. Complexes of SSB and RecA protein are required for eliminating the secondary structure barriers under optimal conditions for strand exchange.

  • PDF

Cleavage of the Star Strand Facilitates Assembly of Some MicroRNAs into Ago2-containing Silencing Complexes in Mammals

  • Shin, Chanseok
    • Molecules and Cells
    • /
    • v.26 no.3
    • /
    • pp.308-313
    • /
    • 2008
  • In animals, microRNAs (miRNAs) and small interfering RNAs (siRNAs) repress expression of protein coding genes by assembling distinct RNA-induced silencing complexes (RISCs). It has previously been shown that passenger-strand cleavage is the predominant mechanism when siRNA duplexes are loaded into Argonaute2 (Ago2)-containing RISC, while an unwinding bypass mechanism is favored for miRNA duplexes with mismatches. Here I present experimental data indicating that some mammalian miRNAs are assembled into Ago2-containing RISC by cleaving their corresponding miRNA star strands. This phenomenon may depend on the secondary structure near the scissile phosphate of the miRNA duplex. In addition, I show that ATP is not required for star-strand cleavage in this process. Taken together, the data here provide insight into the miRNA-loading mechanisms in mammals.

Elementary and Secondary School Teachers' Perspectives of Effective Mathematics Teaching

  • PANG, JeongSuk;KWON, Mi Sun
    • Research in Mathematical Education
    • /
    • v.19 no.2
    • /
    • pp.141-153
    • /
    • 2015
  • This paper compares and contrasts the perspectives of effective mathematics teaching by 135 elementary school teachers, 132 middle school teachers, and 124 high school teachers using a questionnaire in South Korea. All groups of teachers chose in common the teaching and learning strand as the most important for effective mathematics instruction. However, elementary school teachers placed greater importance on the curriculum and content strand than their counterparts did. Elementary school teachers tended to agree more upon the 48 items related to good mathematics teaching than their counterparts did. The similarities and differences among the groups of teachers are expected to provoke discussion of what constitutes high-quality mathematics instruction and how such perspectives may be situated in the socio-cultural context.

Designing An Effective siRNA (효과적인 siRNA의 디자인)

  • Gu, Nam-Jin;Jo, Gwang-Hwi
    • Bioinformatics and Biosystems
    • /
    • v.2 no.1
    • /
    • pp.17-23
    • /
    • 2007
  • Shot interfering RNA (siRNA) can be used to silence specific gene expression and have many potential therapeutic applications. However, how to design an effective siRNA is still not clear. Highly effective siRNA has sequence-specific properties which are low G/C content, low internal stability at the sense strand 3'-terminus, sense strand base bias(position 1 is G/C, position 19 is /AU). Recently, mRNA secondary structure playsan important role in RNAi. Target site of siRNA in high-ordered structure (i.e hairpin loop, multi loop) or base pair of many hydrogen bonds dramatically reduce function of siRNA mediated gene silencing. Possible off-target effects of siRNA is detecting from BLAST search.

  • PDF

SABA (secondary structure assignment program based on only alpha carbons): a novel pseudo center geometrical criterion for accurate assignment of protein secondary structures

  • Park, Sang-Youn;Yoo, Min-Jae;Shin, Jae-Min;Cho, Kwang-Hwi
    • BMB Reports
    • /
    • v.44 no.2
    • /
    • pp.118-122
    • /
    • 2011
  • Most widely used secondary structure assignment methods such as DSSP identify structural elements based on N-H and C=O hydrogen bonding patterns from X-ray or NMR-determined coordinates. Secondary structure assignment algorithms using limited $C{\alpha}$ information have been under development as well, but their accuracy is only ~80% compared to DSSP. We have hereby developed SABA (Secondary Structure Assignment Program Based on only Alpha Carbons) with ~90% accuracy. SABA defines a novel geometrical parameter, termed a pseudo center, which is the midpoint of two continuous $C{\alpha}s$. SABA is capable of identifying $\alpha$-helices, $3_{10}$-helices, and $\beta$-strands with high accuracy by using cut-off criteria on distances and dihedral angles between two or more pseudo centers. In addition to assigning secondary structures to $C{\alpha}$-only structures, algorithms using limited $C{\alpha}$ information with high accuracy have the potential to enhance the speed of calculations for high capacity structure comparison.

Putative Secondary Structure of Human Hepatitis B Viral X mRNA

  • Kim, Ha-Dong;Choi, Yoon-Chul;Lee, Bum-Yong;Junn, Eun-Sung;Ahn, Jeong-Keun;Kang, Chang-Won;Park, In-Won
    • BMB Reports
    • /
    • v.28 no.6
    • /
    • pp.509-514
    • /
    • 1995
  • A putative secondary structure of the mRNA for the human hepatitis B virus (HBV) X gene is proposed based on not only chemical and enzymatic determination of its single- and double-stranded regions but also selection by the computer program MFOLD for energy minimum conformation under the constraints that the experimentally determined nucleotides were forced or prohibited to base pair. An RNA of 536 nucleotides including the 461-nucleotide HBV X mRNA sequence was synthesized in vitro by the phage T7 RNA polymerase transcription. The thermally renatured transcripts were subjected to chemical modifications with dimethylsulfate and kethoxal and enzymatic hydrolysis with single strand-specific RNase T1 and double strand-specific RNase V1, separately. The sites of modification and cleavage were detected by reverse transcriptase extension of 4 different primers. Many nucleotides could be assigned with high confidence, twenty in double-stranded and thirty-seven in Single-stranded regions. These nucleotides were forced and prohibited, respectively, to base pair in running the recursive RNA folding program MFOLD. The results suggest that 6 different regions (5 within X mRNA) of 14~23 nucleotides are Single-stranded. This putative structure provides a good working model and suggests potential target sites for antisense and ribozyme inhibitors and hybridization probes for the HBV X mRNA.

  • PDF

An analysis of strand map for instructional objectives on the 7th curriculum in elementary and secondary biology (제 7차 교육과정의 초.중등 생물 수업 목표의 연계성 지도 분석)

  • Kim, Young-Shin;Kim, Hu-Ja;Sonn, Jong-Kyung;Jeng, Jae-Hoon
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.6
    • /
    • pp.693-711
    • /
    • 2009
  • One of the most important objectives in science education is to develop students' science literacy. The purpose of this study is to analyze the relevance between biology instructional objectives in the 7th curriculum taught in elementary and secondary schools. For this study, 7 major parts in each grade were analyzed including cell, the form and function of plants, the form and function of animals, genetics, diversity, evolution, ecology, and environment. The strand map of instructional objectives is completed that represents the relation between the objectives. The summary of the results from this study is as follows. First, the concept about cells is not fully covered in lower grades including elementary schools. While the concept of energy metabolism is repeatedly covered, there is no concept of energy covered in learning the concept of energy metabolism in elementary schools. Second, the textbooks in elementary and middle schools have main concepts about the form and function of plants while those in high schools don't. The concept related to the part of the form and function of animals is repeatedly involved in the curriculum throughout the elementary, middle, and high schools. Third, the concepts such as genetics and evolution are involved in higher grades since these concepts are abstract ones. The part of genetics and evolution as well as diversity has no connection between grades in schools, so the development of "notion between" is necessary to relate these concepts with each other. Fourth, the 4 parts of diversity, ecology and environment, evolution, and the form and function of plants are covered in limited grade levels. The results of the relevance of gene in lesson goals will play an important rein as the primary material in developing the connection between textbooks in which lesson goals are closely related to each other throughout all grade levels in elementary, middle and high schools.

Purification and Backbone Assignment of the Hypothetical Protein MTH1821 from Methanobacterium Thermoautotrophicum H

  • Kwak, Soo-Young;Lee, Woong-Hee;Shin, Joon;Ko, Sung-Geon;Lee, Weon-Tae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.11 no.2
    • /
    • pp.73-84
    • /
    • 2007
  • MTH1821 (UniProtKB/TrEMBL ID O27849) is a 96-residue hypothetical protein from the open reading frame of Methanobacterium thermoautotrophicum H one of the target organisms of structural genomics pilot project. Proteins which contain conserved sequence compared with MTH1821 have not been discovered yet and the functional and structural information for MTH1821 is not available. Here, we present the sequence-specific backbone resonance using multidimensional heteronuc1ear NMR spectroscopy and propose the secondary structure using GetSBY software. The backbone resonances of N, HN, $C_{\alpha}$, $C_{\beta}$, CO and $H_{\alpha}$ which are necessary for a prediction of secondary structure by GetSBY were assigned about 98% (557/568). The secondary structure of MTH1821 confirmed that it is comprised of four strand regions and two helical regions. This report will provide a valuable resource for the calculation solution structure of MTH1821 and for the other hypothetical protein that is targeted for structural-based functional discovery.

  • PDF

Application of multi dimensional NMR experiments to VBS RNAs of Yeast Saccaromyces cerevisiae virus

  • Chaejoon Cheong;Cheong, Hae-Kap;Yoo, Jun-Seok
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.5 no.1
    • /
    • pp.29-36
    • /
    • 2001
  • The structures of two VBS (viral binding site) RNAs, SL1 and SL2, of Yeast Saccharomyces cerevisiae vims have been studied by 2D and 3D NMR experiments. VBSs play a crucial role in viral particle binding to the plus strand and packaging of the RNA. The secondary structures of the two VBS RNAs share a common feature of the stem-internal loop-stem-hairpin loop structure although the size of the internal loops of SL1 and SL2 differs. 2D experiments were sufficient for fill assignments of SL1. However, isotope labeling of the sample and multidimensional experiments were required for 28-nucleotide-long SL2 due to the spectral overlap. Several 3D HCCH experiments have accomplished full assignment of SL2 RNA.

  • PDF