• Title/Summary/Keyword: Secondary Radiation

Search Result 315, Processing Time 0.025 seconds

Feasibility of normal tissue dose reduction in radiotherapy using low strength magnetic field

  • Jung, Nuri Hyun;Shin, Youngseob;Jung, In-Hye;Kwak, Jungwon
    • Radiation Oncology Journal
    • /
    • v.33 no.3
    • /
    • pp.226-232
    • /
    • 2015
  • Purpose: Toxicity of mucosa is one of the major concerns of radiotherapy (RT), when a target tumor is located near a mucosal lined organ. Energy of photon RT is transferred primarily by secondary electrons. If these secondary electrons could be removed in an internal cavity of mucosal lined organ, the mucosa will be spared without compromising the target tumor dose. The purpose of this study was to present a RT dose reduction in near target inner-surface (NTIS) of internal cavity, using Lorentz force of magnetic field. Materials and Methods: Tissue equivalent phantoms, composed with a cylinder shaped internal cavity, and adjacent a target tumor part, were developed. The phantoms were irradiated using 6 MV photon beam, with or without 0.3 T of perpendicular magnetic field. Two experimental models were developed: single beam model (SBM) to analyze central axis dose distributions and multiple beam model (MBM) to simulate a clinical case of prostate cancer with rectum. RT dose of NTIS of internal cavity and target tumor area (TTA) were measured. Results: With magnetic field applied, bending effect of dose distribution was visualized. The depth dose distribution of SBM showed 28.1% dose reduction of NTIS and little difference in dose of TTA with magnetic field. In MBM, cross-sectional dose of NTIS was reduced by 33.1% with magnetic field, while TTA dose were the same, irrespective of magnetic field. Conclusion: RT dose of mucosal lined organ, located near treatment target, could be modulated by perpendicular magnetic field.

Clinical Risk Evaluation Using Dose Verification Program of Brachytherapy for Cervical Cancer (자궁경부암 근접치료 시 선량 검증 프로그램을 통한 임상적 위험성 평가)

  • Dong‑Jin, Kang;Young‑Joo, Shin;Jin-Kyu, Kang;Jae‑Yong, Jung;Woo-jin, Lee;Tae-Seong, Baek;Boram, Lee
    • Journal of radiological science and technology
    • /
    • v.45 no.6
    • /
    • pp.553-560
    • /
    • 2022
  • The purpose of this study is to evaluate the clinical risk according to the applicator heterogeneity, mislocation, and tissue heterogeneity correction through a dose verification program during brachytherapy of cervical cancer. We performed image processing with MATLAB on images acquired with CT simulator. The source was modeled and stochiometric calibration and Monte-Carlo algorithm were applied based on dwell time and location to calculate the dose, and the secondary cancer risk was evaluated in the dose verification program. The result calculated by correcting for applicator and tissue heterogeneity showed a maximum dose of about 25% higher. In the bladder, the difference in excess absolute risk according to the heterogeneity correction was not significant. In the rectum, the difference in excess absolute risk was lower than that calculated by correcting applicator and tissue heterogeneity compared to the water-based calculation. In the femur, the water-based calculation result was the lowest, and the result calculated by correcting the applicator and tissue heterogeneity was 10% higher. A maximum of 14% dose difference occurred when the applicator mislocation was 20 mm in the Z-axis. In a future study, it is expected that a system that can independently verify the treatment plan can be developed by automating the interface between the treatment planning system and the dose verification program.

Green synthesis of Lead-Nickel-Copper nanocomposite for radiation shielding

  • B.M. Chandrika;Holaly Chandrashekara Shastry Manjunatha;R. Munirathnam;K.N. Sridhar;L. Seenappa;S. Manjunatha;A.J. Clement Lourduraj
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4671-4677
    • /
    • 2023
  • For the first time Pb, Ni, and Cu nanocomposites were synthesized by versatile solution combustion synthesis using Aloevera extract as a reducing agent, to study the potential applications in X-ray/gamma, neutron, and Bremsstrahlung shielding. The synthesized Lead-Nickel-Copper (LNC) nanocomposites were characterized by PXRD, SEM, UV-VIS, and FTIR for the confirmation of successful synthesis. PXRD analysis confirmed the formation of multiphase LNC NCs and the Scherrer equation and the W-H plot gave the average crystal sizes of 19 nm and 17 nm. Surface morphology using SEM and EDX confirmed the presence of LNC NCs. Strong absorption peaks were analyzed by UV visible spectroscopy and the direct energy gap is found to be 3.083 eV. Functional groups present in the LNC NCs were analyzed by FTIR spectroscopy. X-ray/gamma radiation shielding properties were measured using NaI(Tl) detector coupled with MCA. It is found to be very close to Pb. Neutron shielding parameters were compared with traditional shielding materials and found LNC NCs are better than lead and concrete. Secondary radiation shielding known as Bremsstrahlung shielding characteristics also studied and found that LNC NCs are best in secondary radiation shielding. Hence LNC NCs find shielding applications in ionizing radiation such as X-ray/gamma and neutron radiation.

Low-dose radiation therapy for massive chylous leakage after subtotal gastrectomy

  • Kim, Sang-Won;Kim, Jung Hoon
    • Radiation Oncology Journal
    • /
    • v.35 no.4
    • /
    • pp.380-384
    • /
    • 2017
  • Massive chylous leakage is a rare postoperative complication that can prolong hospital stay and cause secondary morbidities. Conservative management strategies are the treatment of choice; however, radiation therapy (RT) can be used as an alternative for cases that are refractory to conservative treatment. Herein, we report a 69-year-old female patient who suffered from massive chylous leakage after subtotal gastrectomy. Due to persistent massive chylous leakage, she was scheduled to undergo low-dose RT. Radiation was delivered with a daily dose of 1 Gy, using an anterior-posterior and posterior-anterior beam arrangement. The clinical target volume encompassed the entire lymph node area of the D2 dissection. RT was completed at the total dose of 8 Gy because the amount of chylous leakage declined rapidly. Percutaneous drainage tube was removed after 3 days of RT. The patient did not complain of any symptoms related to massive chylous leakage 2 years after the completion of RT.

A Study of Cancer Incidence Rate due to Photoneutron Dose during Radiation Therapy for Prostate Cancer Patients (전립샘암 환자의 방사선 치료 시 광중성자 선량으로 인한 암 발생률의 연구)

  • Lee, Joo-Ah
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.471-476
    • /
    • 2022
  • The purpose of this study was to study the probability of cancer occurrence due to photoneutron dose exposure of the colon and thyroid gland, which are normal organs, in 3D CRT, IMRT 5 portals, and IMRT 9 portals, which are radiotherapy methods for prostate cancer. The total prescribed dose for prostate cancer was 6600 cGy, 220 cGy per dose, and 30 divided irradiations were applied for the total number of times. After setting up the Rando phantom on the treatment table (couch) of the medical linear accelerator used in the experiment, an optically stimulated luminescence albedo neutron dosimeter was placed on the corresponding area of the large intestine and thyroid gland of the phantom for measurement. During 3D CRT of prostate cancer, the probability of secondary cancer due to photoneutron dose to the colon and thyroid gland, which are normal organs, was 1.8 per 10,000 people. And IMRT 5 portals were 8.7 per 10,000 people, which was about 5 times larger than 3D CRT. IMRT 9 portals derived the result that there is a probability that 1.2 people per 1,000 people will develop cancer. Based on this study, the risk of secondary radiation exposure due to the dose of photoneutrons generated during radiation therapy is studied, and it is thought that it will be used as useful data for radiation protection in relation to the stochastic effect of radiation in the future.

SECONDARY ELECTRONS IN CLUSTERS OF GALAXIES AND GALAXIES

  • HWANG CHORNG- YUAN
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.461-463
    • /
    • 2004
  • We investigate the role of secondary electrons in galaxy clusters and in ultra-luminous infrared galaxies (ULIGs). The radio emission in galaxy clusters and ULIGs is believed to be produced by the synchrotron radiation of relativistic electrons. Nonetheless, the sources of these relativistic electrons are still unclear. Relativistic secondary electrons can be produced from the hadronic interactions of cosmic-ray nuclei with the intra-cluster media (ICM) of galaxy clusters and the dense molecular clouds of ULIGs. We estimate the contribution of the secondary electrons in galaxy clusters and ULIGs by comparing observational results with theoretical calculations for the radio emission in these sources. We find that the radio halos of galaxy clusters can not be produced from the secondary electrons; on the other hand, at least for some ULIGs, the radio emission can be dominated by the synchrotron emission of the secondary electrons.

Development of a Fiber-optic Noncontact Temperature Sensor for Measuring the Temperature of Cooled Secondary Water in a Nuclear Power Plant (냉각된 원전 2차계통수의 온도측정을 위한 비접촉식 광섬유 온도센서의 개발)

  • Yoo, Wook-Jae;Lee, Bong-Soo;Park, Byung-Gi;Cho, Young-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.5
    • /
    • pp.1730-1734
    • /
    • 2010
  • Generally, a pH value of secondary water in a nuclear power plant should be estimated after sampling and cooling down. In this process, the measurement of temperature is very important because a pH value is varied according to the temperature of secondary water. In this study, a noncontact fiber-optic temperature sensor using a silver halide optical fiber is fabricated to measure the temperature of cooled secondary water. And we have measured an infrared radiation, which is transferred by a silver halide optical fiber from a heat source, using a thermopile sensor. The relationships between the temperature of a heat source and the output voltage of the fiber-optic temperature sensor according to the change of distance and angle are determined. The measurable temperature range of the fiber-optic temperature sensor is from 25 to $60^{\circ}C$. Based on the results of this study, a noncontact temperature sensor using a silver halide optical fiber can be developed for the temperature measurement of the pH sample in the secondary water system.

Characterization of Physical Processes and Secondary Particle Generation in Radiation Dose Enhancement for Megavoltage X-rays (MV X선의 방사선 선량 증강 현상에서 물리적 특성과 이차입자의 발생)

  • Hwang, Chulhwan;Kim, JungHoon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.791-799
    • /
    • 2019
  • We evaluated the physical properties that occur to dose enhancement and changes from secondary particle production resulting from the interaction between enhancement material. Geant4 was used to perform a Monte Carlo simulation, and the medical internal radiation dose (MIRD) head phantom were employed. X-rays of 4, 6, 10, 15, 18, and 25 MV were used. Aurum (Au) and gadolinium (Gd) were applied within the tumor volume at 10, 20, and 30 mg/g, and an experiment using soft tissue exclusively was concomitantly performed for comparison. Also, particle fluence and initial kinetic energy of secondary particle of interaction were measured to calculate equivalent doses using the radiation weight factor. The properties of physical interaction by the radiation enhancement material showed the great increased in photoelectric effect as compared to the compton scattering and pair production, occurred with the highest, in aurum and gadolinium it is shown in common. The photonuclear effect frequency increased as the energy increased, thereby increasing secondary particle production, including alpha particles, protons, and neutrons. During dose enhancement using aurum, a maximum 424.25-fold increase in the equivalent dose due to neutrons was observed. This study was Monte Carlo simulation corresponds to the physical process of energy transmission in dose enhancement. Its results may be used as a basis for future in vivo and in vitro experiments aiming to improve effects of dose enhancement.

Effect of Scatter ray in Outside Telecobalt-60 Field Size (코발트-60 조사야 밖의 장기에 미치는 2차선의 영향)

  • Kim, You-Hyun;Kim, Young-Whan
    • Journal of radiological science and technology
    • /
    • v.11 no.2
    • /
    • pp.65-71
    • /
    • 1988
  • Radiation dose outside the radiotherapy treatment field can be significant and therefore is of clinical interest estimating organ dose. We have made measurements of dose at distances up to 70 cm from the central axis of $5{\times}5$, $10{\times}10$, $15{\times}15$, and $25{\times}25$ cm radiation fields of Co-60 ${\gamma}-ray$, at 5 cm depth in water. Contributions to the total secondary radiation dose from water scatter, machine (collimator) scatter and leakage radiation have been seperated. We have found that the component of dose from water scatter can be described by simple exponential function of distance from the central axis of the radiation field for all field sizes. Machine scatter contributes 20 to 60% of the total secondary dose depending on field size and distance from the field. Leakage radiation contributes very little dose, but becomes the dominant componant at distance beyond 40 cm from the central axis. Then, wedges can cause a factor 2 to 3 increase in dose at any point outside the field compared with the dose when no wedge is used. Adding blocks to a treatment field can cause an increase in dose at points outside the field, but the effect is much smaller than the effect of a wedge. From the results of these measurements, doses to selected organs outside the field for specified treatment geometries were estimated, and the potential for reducing these organ doses by additional shielding was assessed.

  • PDF