Browse > Article
http://dx.doi.org/10.17946/JRST.2022.45.6.553

Clinical Risk Evaluation Using Dose Verification Program of Brachytherapy for Cervical Cancer  

Dong‑Jin, Kang (Department of Radiation Oncology, Inje University Sanggye Paik Hospital)
Young‑Joo, Shin (Department of Radiation Oncology, Inje University Sanggye Paik Hospital)
Jin-Kyu, Kang (Department of Radiation Oncology, Inje University Sanggye Paik Hospital)
Jae‑Yong, Jung (Department of Radiation Oncology, Inje University Sanggye Paik Hospital)
Woo-jin, Lee (Department of Radiation Oncology, Samsung Medical Center)
Tae-Seong, Baek (Department of Radiation Oncology, National Health Insurance Service Ilsan Hospital)
Boram, Lee (Department of Radiation Oncology, Inha University Hospital)
Publication Information
Journal of radiological science and technology / v.45, no.6, 2022 , pp. 553-560 More about this Journal
Abstract
The purpose of this study is to evaluate the clinical risk according to the applicator heterogeneity, mislocation, and tissue heterogeneity correction through a dose verification program during brachytherapy of cervical cancer. We performed image processing with MATLAB on images acquired with CT simulator. The source was modeled and stochiometric calibration and Monte-Carlo algorithm were applied based on dwell time and location to calculate the dose, and the secondary cancer risk was evaluated in the dose verification program. The result calculated by correcting for applicator and tissue heterogeneity showed a maximum dose of about 25% higher. In the bladder, the difference in excess absolute risk according to the heterogeneity correction was not significant. In the rectum, the difference in excess absolute risk was lower than that calculated by correcting applicator and tissue heterogeneity compared to the water-based calculation. In the femur, the water-based calculation result was the lowest, and the result calculated by correcting the applicator and tissue heterogeneity was 10% higher. A maximum of 14% dose difference occurred when the applicator mislocation was 20 mm in the Z-axis. In a future study, it is expected that a system that can independently verify the treatment plan can be developed by automating the interface between the treatment planning system and the dose verification program.
Keywords
Monte-Carlo algorithm; Dose verification Program; Applicator; Excess absolute risk; Secondary cancer risk;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Schneider W, Bortfeld T, Schlegel W. Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions. Phys Med Biol. 2000;45(2):459-78.   DOI
2 Kang DJ, Shin YJ, Jeong S, Jung JY, Lee H, Lee B. Development of clinical application program for radiotherapy induced cancer risk calculation using Monte Carlo engine in volumetric-modulated arc therapy. Radiat Oncol. 2021;16(1):108.
3 http://mipl.korea.ac.kr/cocomon
4 Watzke O, Kalender WA. A pragmatic approach to metal artifact reduction in CT: Merging of metal artifact reduced images. Eur Radiol. 2004;14(5):849-56.   DOI
5 Filippi AR, Vanoni V, Meduri B, Cozzi L, Scorsetti M, Ricardi U, et al. Intensity Modulated Radiation Therapy and Second Cancer Risk in Adults. Int J Radiat Oncol Biol Phys. 2018;100(1):17-20.   DOI
6 Schneider U, Kaser-Hotz B. Radiation risk estimates after radiotherapy: Application of the organ equivalent dose concept to plateau dose-response relationships. Radiat Environ Biophys. 2005;44(3):235-9.   DOI
7 Donovan EM, James H, Bonora M, Yarnold JR, Evans PM. Second cancer incidence risk estimates using BEIR VII models for standard and complex external beam radiotherapy for early breast cancer. Med Phys. 2012;39(10):5814-24.   DOI
8 Schneider U, Zwahlen D, Ross D, Kaser-Hotz B. Estimation of radiation-induced cancer from three-dimensional dose distributions: Concept of organ equivalent dose. Int J Radiat Oncol Biol Phys. 2005;61(5):1510-5.   DOI
9 Tian Z, Zhang M, Hrycushko B, Albuquerque K, Jiang SB, Jia X. Monte Carlo dose calculations for high-dose-rate brachytherapy using GPU-accelerated processing. Brachytherapy. 2016;15(3):387-98.   DOI
10 Ferrari P, Gualdrini G. MCNPX internal dosimetry studies based on the NORMAN-05 voxel model. Radiat Prot Dosimetry. 2007;127(1-4):209-13.   DOI
11 Taylor RE, Yegin G, Rogers DW. Benchmarking brachydose: Voxel based EGSnrc Monte Carlo calculations of TG-43 dosimetry parameters. Med Phys. 2007;34(2):445-57.
12 Chang KH. Treatment Planning Guideline of EBT Film-based Delivery Quality Assurance Using Statistical Process Control in Helical Tomotherapy. Journal of Radiological Science and Technology. 2022;45(5):439-48.   DOI
13 Kang DJ, Jung JY, Shin YJ, Min JH, Sim JG, Park SH. Evaluation of Dose Volume and Radiobiological Indices by the Dose Calculation Grid Size in Nasopharyngeal Cancer VMAT. Journal of Radiological Science and Technology. 2020;43(4):265-72.   DOI
14 Ministry of Health & Welfare. Cancer Incidence in Korea 2017; 2020.
15 Onal C, Guler OC, Dolek Y, Erbay G. Uterine perforation during 3-dimensional image-guided brachytherapy in patients with cervical cancer: Baskent University experience. Int J Gynecol Cancer. 2014;24(2):346-51.   DOI
16 Atahan IL, Onal C, Ozyar E, Yiliz F, Selek U, Kose F. Long-term outcome and prognostic factors in patients with cervical carcinoma: A retrospective study. Int J Gynecol Cancer. 2007;17(4):833-42.   DOI
17 Eifel PJ, Moughan J, Erickson B, Iarocci T, Grant D, Owen J. Patterns of radiotherapy practice for patients with carcinoma of the uterine cervix: A patterns of care study. Int J Radiat Oncol Biol Phys. 2004;60(4):1144-53.   DOI
18 Lee HJ, Kim YS, Shin SS, Nam JH, Kim YT, Han SB, et al. Long-term outcomes of concomitant chemoradiotherapy incorporating high-dose-rate brachytherapy to treat locally advanced cervical cancer. Tumori. 2012;98(5):615-21.   DOI
19 Banerjee R, Kamrava M. Brachytherapy in the treatment of cervical cancer: A review. Int J Womens Health. 2014;6:555-64.
20 Crook JM, Esche BA, Chaplain G, Isturiz J, Sentenac I, Horiot JC. Dose-volume analysis and the prevention of radiation sequelae in cervical cancer. Radiother Oncol. 1987;8(4):321-32.   DOI
21 Vojtisek R, Sukovska E, Baxa J, Budikova M, Kovarova P, Finek J. Late side effects of 3T MRI-guided 3D high-dose rate brachytherapy of cervical cancer: Institutional experiences. Strahlenther Onkol. 2019;195(11):972-81.
22 Chen J, Zhang N, Liu Y, Han D, Mao Z, Yang W, et al. Analysis of Applicator Insertion Related Acute Side Effects for Cervical Cancer Treated With Brachytherapy. Front Oncol. 2021;11:677052.
23 Isohashi F, Akino Y, Matsumoto Y, Suzuki O, Seo Y, Temari K, et al. Dose rate in the highest irradiation area of the rectum correlates with late rectal complications in patients treated with high-dose-rate computed tomography-based image-guided brachytherapy for cervical cancer. J Radiat Res. 2021;62(3):494-501.   DOI
24 Segedin B, Gugic J, Petric P. Uterine perforation-5-year experience in 3-D image guided gynaecological brachytherapy at Institute of Oncology Ljubljana. Radiol Oncol. 2013;47(2):154-60.   DOI
25 Irvin W, Rice L, Taylor P, Andersen W, Schneider B. Uterine perforation at the time of brachytherapy for carcinoma of the cervix. Gynecol Oncol. 2003;90(1):113-22.   DOI
26 Kim DW, Chung WK, Shin DO, Hong SG, Park SH, Park SY, et al. Risk of second cancer from scattered radiation of intensity-modulated radiotherapies with lung cancer. Radiat Oncol. 2013;8:47.
27 Barnes EA, Thomas G, Ackerman I, Barbera L, Letourneau D, Lam K, et al. Prospective comparison of clinical and computed tomography assessment in detecting uterine perforation with intracavitary brachytherapy for carcinoma of the cervix. Int J Gynecol Cancer. 2007;17(4):821-26.   DOI
28 National Research Council(U.S.). Committee to Assess Health Risks from Exposure to Low Level of Ionizing Radiation. Health risks from exposure to low levels of ionizing radiation: BEIR VII Phase 2.Washington, D.C.: National Academies Press; 2006.
29 Lee B, Lee S, Sung J, Yoon M. Radiotherapy-induced secondary cancer risk for breast cancer: 3D conformal therapy versus IMRT versus VMAT. J Radiol Prot. 2014;34(2):325-31.   DOI
30 Lee B, Ahn SH, Kim H, Son JM, Sung JW, Han YY, et al. Secondary cancer-incidence risk estimates for external radiotherapy and high-dose-rate brachytherapy in cervical cancer: Phantom study. J Appl Clin Med Phys. 2016;17(5):124-32.   DOI
31 Nag S, Cardenes H, Chang S, Das I, Erickson B, Ibbott G, et al. Proposed guidelines for image-based intracavitary brachytherapy for cervical carcinoma: Report from Image-Guided Brachytherapy Working Group. Int J Radiat Oncol Biol Phys. 2004;60(4):1160-72.   DOI
32 Rivard MJ, Coursey BM, DeWerd LA, Hanson WF, Huq MS, Ibbott GS, et al. Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations. Med. Phys. 2004;31(3):633-72.   DOI
33 Daskalov GM, Kirov AS, Williamson JF. Analytical approach to heterogeneity correction factor calculation for brachytherapy. Med Phys. 1998;25(5):722-35.   DOI
34 Anagnostopoulos G, Baltas D, Karaiskos P, Pantelis E, Papagiannis P, Sakelliou L. An analytical dosimetry model as a step towards accounting for inhomogeneities and bounded geometries in 192Ir brachytherapy treatment planning. Phys Med Biol. 2003;48(11):1625-47.
35 Mikell JK, Klopp AH, Gonzalez GM, Kisling KD, Price MJ, Berner PA, et al. Impact of heterogeneity-based dose calculation using a deterministic grid-based Boltzmann equation solver for intracavitary brachytherapy. Int J Radiat Oncol Biol Phys. 2012;83(3):e417-22.   DOI
36 Poon E, Verhaegen F. A CT-based analytical dose calculation method for HDR 192Ir brachytherapy. Med Phys. 2009;36(9):3982-94.   DOI
37 Tedgren AK, Ahnesjo A. Accounting for high Z shields in brachytherapy using collapsed cone superposition for scatter dose calculation. Med Phys. 2003;30(8):2206-17.
38 Ravikumar B, Lakshminarayana S. Determination of the tissue inhomogeneity correction in high dose rate Brachytherapy for Iridium-192 source. J Med Phys. 2012;37(1):27-31.
39 Hyer DE, Sheybani A, Jacobson GM, Kim Y. The dosimetric impact of heterogeneity corrections in high-dose-rate 192Ir brachytherapy for cervical cancer: Investigation of both conventional Point-A and volume-optimized plans. Brachytherapy. 2012;11(6):515-20.   DOI
40 Wu CH, Liao YJ, Shiau AC, Lin HY, Hsueh Liu YW, Hsu SM. HDR Brachytherapy Dose Distribution is Influenced by the Metal Material of the Applicator. Sci Rep. 2015;5:17863.
41 Okamoto H, Nakamura S, Nishioka S, lIjima K, Wakita A, Abe Y, et al. Independent assessment of source position for gynecological applicator in high-dose-rate brachytherapy. J Contemp Brachytherapy. 2017;9(5):477-86.
42 Zhang SX, Gao J, Buchholz TA, Wang Z, Salehpour MR, Drezek RA, et al. Quantifying tumor-selective radiation dose enhancements using gold nanoparticles: A monte carlo simulation study. Biomed Microdevices. 2009;11(4):925-33.
43 Yoon M, Cho S, Jeong JH, Kim CH. Monte Carlo Simulation Study on Dose Enhancement by Gold Nanoparticles in Brachytherapy. Journal of the Korean Physical Society. 2010;56(6):1754-8.   DOI