• Title/Summary/Keyword: Secondary Particles

Search Result 357, Processing Time 0.028 seconds

Effect of Swirling Flow by Normal Injection of Secondary Air on the Gas Residence Time and Mixing Characteristics in a Lab-Scale Cold Model Combustor

  • Shin, D.;Park, S.;Jeon, B.;Yu, T.;Hwang, J.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2284-2291
    • /
    • 2006
  • The present study investigates gas residence time and mixing characteristics for various swirl numbers generated by injection of secondary air into a lab-scale cylindrical combustor. Fine dust particles and butane gas were injected into the test chamber to study the gas residence time and mixing characteristics, respectively. The mixing characteristics were evaluated by standard deviation value of trace gas concentration at different measurement points. The measurement points were located 25 mm above the secondary air injection position. The trace gas concentration was detected by a gas analyzer. The gas residence time was estimated by measuring the temporal pressure difference across a filter media where the particles were captured. The swirl number of 20 for secondary air injection angle of 5$^{\circ}$ gave the best condition: long gas residence time and good mixing performance. Numerical calculations were also carried out to study the physical meanings of the experimental results, which showed good agreement with numerical results.

Axial Velocity Profiles and Secondary Flows of Developing Laminar Flows in a Straight Connected Exit Region of a 180° Square Curved Duct (180° 곡관덕트의 출구영역에 연결된 직관덕트에서 층류유동의 속도분포와 2차유동)

  • Sohn Hyun-Chull;Lee Heang-Nam;Park Gil-Moon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1092-1100
    • /
    • 2005
  • In the present study, characteristics of steady state laminar flows of a straight duct connected to a 180$^{o}$ curved duct were examined in the entrance region through experimental and numerical analyses. For the analysis, the governing equations of laminar flows in the Cartesian coordinate system were applied. Flow characteristics such as velocity profiles and secondary flows were investigated numerically and experimentally in a square cross-sectional straight duct by the PIV system and a CFD code(STAR CD). For the PIV measurement, smoke particles produced from mosquito coils. The experimental data were obtained at 9 points dividing the test sections by 400 3m. Experimental and numerical results can be summarized as follows. 1) Reynolds number, Re was increased, dimensionless velocity profiles at the outer wall were increased due to the effect of the centrifugal force and secondary flows. 2) The intensity of a secondary flow became stronger at the inner wall rather than the outer wall regardless of Reynolds number. Especially, fluid dynamic phenomenon called conner impact were observed at dimensionless axial position, x/D$_{h}$=50.

The Patterns of Students' Conceptions and Teachers' Teaching Practices on Dissolution (용해 현상에 대한 학생들의 개념유형 및 교사들의 지도 실태)

  • Kang, Dae-Hun;Paik, Seoung-Hey;Park, Kuk-Tae
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.4
    • /
    • pp.399-413
    • /
    • 2004
  • In this study, a survey was conducted of students of elementary through college on their conceptions of phenomenon related with dissolution, saturation, and extraction. The teaching strategies of elementary and secondary teachers related to dissolution phenomena were also investigated. Most of elementary and secondary school students thought of dissolution as a phenomenon in which particles broke into the spaces between other particles. This explanation called 'space conception' can be sought in elementary school science textbooks. Some of high school students also had this type of thought. A concept of dissolution phenomenon as 'hydration through attraction of solvent and solute' was held by most of students of 11th, 12th grade, and college. This explanation called 'attraction concept' can be sought in high school chemistry textbooks for 11th and 12th grade. But many students of elementary through college used analogies and models related to 'space conception' when they tried to explain the dissolution phenomena. This indicates that the 'attraction concept' was not firmly established in the students' cognition. 90% of elementary school teachers thought and taught dissolution as a phenomenon in which two different size particles were mixing together like as mixing beans and millets. The model does not represent the attractions among solvent-solvent particles, solvent-solute particles, and solute-solute particles. This model only represents the space size effect (smaller size particles fitting into the spaces of larger size particles). Half of the secondary school teachers also had 'space conception' and only 20% of the teachers had 'attraction concept' Many teachers who had 'attraction concept' used to represent explanation related to 'space conception' for teaching dissolution.

Concentration and Pollution Characteristics of Secondary Aerosol Components Over the Yellow Sea by Ship-Borne Observation in Spring, 2015 (2015년 봄철에 선박으로 관측한 서해상 이차에어로졸 성분의 농도 및 오염 특성)

  • Ko, Hee-Jung;Kang, Chang-Hee;Cha, Joo Wan;Ryoo, Sang-Boom
    • Atmosphere
    • /
    • v.27 no.1
    • /
    • pp.29-40
    • /
    • 2017
  • The $PM_{10}$ and $PM_{2.5}$ particles over the Yellow Sea of Korea were collected by ship-borne observation during two cruises in spring, 2015. Their water-soluble ionic components such as $NH_4^+$, $Na^+$, $K^+$, $Mg^{2+}$, $Ca^{2+}$, $SO_4^{2-}$, $NO_3^-$, $Cl^-$, $F^-$, $CH_3COO^-$, $HCOO^-$, and $CH_3SO_3^-$ were analyzed, in order to examine the pollution characteristics of the secondary aerosol components. The comparative study of particle size distribution has resulted that $NH_4^+$, $nss-SO_4^{2-}$, $nss-Mg2+$, $nss-K^+$, $HCOO^-$, and $CH_3SO_3^-$ species mostly existed in fine particle mode. Meanwhile, nss-F-and sea-salt species were distributed in both fine and coarse particle mode, $NO_3^-$, $nss-Ca^{2+}$, $CH_3COO^-$ species were rich in coarse particle mode. The concentrations of secondary pollutants($nss-SO_4^{2-}$, $NO_3^-$, $NH_4^+$) increased in fine particles, and those of natural components ($nss-Ca^{2+}$, Sea-salt) increased in coarse particles. $NH_4^+$ exists as the form of $(NH_4)_2SO_4$ and $NH_4NO_3$, and mostly as $(NH_4)_2SO_4$ in fine particles. $NH_4NO_3$ has lower content compared to $(NH_4)_2SO_4$, and it mostly existed in fine particles at Yellow Sea I and in coarse particles at Yellow Sea II. The concentration ratios of $NO_3^-/nss-SO_4^{2-}$ for Yellow Sea I and Yellow Sea II were 0.52 and 0.16 in coarse particles, and they were 0.64 and 0.38 in fine particles, respectively, showing that the stationary source emissions were more important than mobile source emissions in Yellow Sea II (except Passage II-4).

Effect of Air Stagnation Conditions on Mass Size Distributions of Water-soluble Aerosol Particles (대기 정체와 수용성 에어로졸 입자의 질량크기분포의 관계)

  • Park, Seungshik;Yu, Geun-Hye
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.3
    • /
    • pp.418-429
    • /
    • 2018
  • Measurements of 24-hr size-segregated ambient particles were made at an urban site of Gwangju under high pressure conditions occurred in the Korean Peninsula late in March 2018. The aim of this study was to understand the effect of air stagnation on mass size distributions and formation pathways of water-soluble organic and inorganic components. During the study period, the $NO_3{^-}$, $SO_4{^{2-}}$, $NH_4{^+}$, water-soluble organic carbon (WSOC), and humic-like substances(HULIS) exhibited mostly bi-modal size distributions peaking at 1.0 and $6.2{\mu}m$, with predominant droplet modes. In particular, outstanding droplet mode size distributions were observed on March 25 when a severe haze occurred due to stable air conditions and long range transport of aerosol particles from northeastern regions of China. Air stagnation conditions and high relative humidity during the study period resulted in accumulation of primary aerosol particles from local emission sources and enhanced formation of secondary ionic and organic aerosols through aqueous-phase oxidations of $SO_2$, $NO_2$, $NH_3$, and volatile organic compounds, leading to their dominant droplet mode size distributions at particle size of $1.0{\mu}m$. From the size distribution of $K^+$ in accumulation mode, it can be inferred that in addition to the secondary organic aerosol formations, accumulation mode WSOC and HULIS could be partly attributed to biomass burning emissions.

Analysis of two phase thrbulent flow in pipe with suspension of solid particles (고체분말이 부상된 이상난류 관유동의 해석)

  • ;;Chung, Myung Kyoon
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.5 no.3
    • /
    • pp.159-169
    • /
    • 1981
  • The mixing length theory is extended to close the momentum queations for two-phase turbulent flow at a first-order closure level. It is assumed that the mass fraction of the particles is of the order of unity, that the particle size is so small that the particles are fully suspended is the primary fluid, and that the relaxation time scale of the particles is of the same order as the time scale of the energy containing eddies so that the suspended particles are responsive to the fluctuating turbulent field. The bulk motion of the particles is treated as a secondary fluid with its own coefficient of momentum transport. The proposed closure is uniformly destributed acress the pipe section. Predicted velocity profiles and the friction factors are in good agreement with avaiable experimental data.

Synthesis and Compaction Behavior of Monodispersed 3Y-ZrO2 Spherical Agglomerates

  • Choi, Hong-Goo;Yong, Seok-Min;Kim, Do Kyung
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.434-438
    • /
    • 2013
  • Monodispersed 3Y-$ZrO_2$ spherical agglomerates were synthesized by thermal hydrolysis process followed by crystallization processes (hydrothermal treatment and calcination). The crystallization process affected the properties of the final particles, such as the primary particle size, the agglomeration state, and the fraction of $ZrO_2$ monoclinic phase. The hydrothermal treated spherical particles were porous microstructures (weak agglomerates) composed of small primary particles with a size of 14 nm, but the calcined spherical particles had a dense microstructure due to the hard aggregation between primary particles. While the calcined particles had a low green density due to the hard aggregation, hydrothermal treated ones were soft agglomerates and had a deflection point at 50 MPa due to the rearrangement of secondary spherical particles and the filling of the interstices with the primary particles. Finally, the green density of hydrothermally treated $ZrO_2$ particles was 58% at 200 MPa.

Calculation of Two-Phase Turbulent Jet with a Two-Equation Model (2-方程式 모델 에 의한 二相亂流 제트流動 의 數値解析)

  • 양선규;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.6
    • /
    • pp.714-724
    • /
    • 1985
  • Two-phase(air-solid, air-liquid droplet) turbulent round jet has been analyzed numerically using two equation turbulence model. The mean motion of suspending particles in air has been treated as the secondary fluid with virtual density and eddy viscosity. In this paper, the local mean velocity of secondary fluid is not assumed to be the same as that of the primary one. Dissipation rate of turbulent kinetic energy which arises because the particles can not catch up with the turbulent fluctuations of the primary fluid has been modelled by using the concept of Kolmogorov's spectral energy transfer. Numerical computations were performed for flows with different volume fraction of the dispersed phase and the diameter of particle. Results show that the total rate of turbulent energy dissipation, turbulent intensities and spreading rate of jets are reduced by the increase of volume fraction of dispersed phase. However it does not show consistent tendency with increasing the particle diameter. This investigation also shows that presence of particles in the fluid modifies the structure of the primary fluid flow significantly. Predicted velocity profiles and turbulence properties qualitatively agree with available data.

Electrochemical Performance of Spherical LiCoO2 Powders Synthesized Using Ultrasonic Spray Pyrolysis Method (I) : Effect of Pyrolysis Conditions on Powder Characteristics

  • Kim, Seon-Hye;Choa, Yong-Ho;Shim, Kwang-Bo;Cho, Byung-Won;Kim, Chang-Sam
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.11
    • /
    • pp.793-796
    • /
    • 2004
  • Process Parameters were studied in synthesis of LiCoO$_2$ Powder by ultrasonic spray Pyrolysis. Concentration of the mixed solution influenced the size, shape, and yield of the synthesized powder. The yield was affected primarily by the height of the solution, and then by the flow rate of a carrier gas. The temperature of the reactor governed the crystallinity and morphology of the powder. LiCoO$_2$ powders were synthesized as a layered high temperature phase above 800$^{\circ}C$. The synthesized powders were sphere and secondary Particles consisted of primary particles of 55-70 nm. The secondary Particles became bigger from 0.28 to 1.43 $\mu\textrm{m}$ as the concentration of the solution was increased from 0.05 to 2.0 M. The 2.0 M solution provided the highest production rate.

Effects of Operating Variables on the Solid Circulation Rate in a Three-phase Circulating Fluidized Bed

  • Kim, Min Kon;Hong, Sung Kyu;Lim, Dae Ho;Yoo, Dong Jun;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.440-444
    • /
    • 2015
  • Effects of operating variables on the solid circulation rate were investigated in a three-phase circulating fluidized bed, of which inside diameter was 0.102m and height was 3.5m, respectively. Gas velocity, primary and secondary liquid velocities, particle size and height of solid particles piled up in the solid recycle device were chosen as operating variables. The solid circulation rate increased with increasing primary and secondary liquid velocities and height of solid particles piled up in the solid recycle device, but decreased with increasing particle size. The value of solid circulation rate decreased only slightly with increasing gas velocity in the riser. The values of solid circulation rate were well correlated in terms of dimensionless groups within the experimental conditions.