• 제목/요약/키워드: Second-order reliability method

검색결과 251건 처리시간 0.024초

Test of a Multi-Reference Many-Body Perturbation Theory for the Description of Electron Correlations in four Valence Electron States of Transition Metal Atoms

  • Lee, Yoon-Sup;Sun, Ho-Sung;Freed, Karl F.;Hagstrom, S.
    • Bulletin of the Korean Chemical Society
    • /
    • 제7권4호
    • /
    • pp.262-266
    • /
    • 1986
  • A multi-reference many-body perturbation theory (MRMBPT) method is critically tested in second order by comparing with the corresponding configuration interaction (CI) calculations. Excitation energies of the four-valence-electron states of transition metal atoms and ions are used for the comparison. The agreement between the second order MRMBPT and CI calculations is very reasonable, confirming the reliability of the second order MRMBPT method. The reliability of calculations with the present second order MRMBPT method was only been inferred empirically in the past since most results have been gauged by the agreement with experiment and/or with other MRMBPT calculations based upon different sets of orbitals and configuration spaces. The present MRMBPT method appears to be an efficient ab initio multi-reference method for the calculation of electron correlation effects in atoms and molecules, and it is shown how MRMBPT can be used to estimate core-core and core-valence correlation effects which are often omitted in CI calculations because too many configurations and correlating electrons are involved.

동적 신뢰성 해석 기법의 수치 안정성에 관하여 (On the Numerical Stability of Dynamic Reliability Analysis Method)

  • 이도근;옥승용
    • 한국안전학회지
    • /
    • 제35권3호
    • /
    • pp.49-57
    • /
    • 2020
  • In comparison with the existing static reliability analysis methods, the dynamic reliability analysis(DyRA) method is more suitable for estimating the failure probability of a structure subjected to earthquake excitations because it can take into account the frequency characteristics and damping capacity of the structure. However, the DyRA is known to have an issue of numerical stability due to the uncertainty in random sampling of the earthquake excitations. In order to solve this numerical stability issue in the DyRA approach, this study proposed two earthquake-scale factors. The first factor is defined as the ratio of the first earthquake excitation over the maximum value of the remaining excitations, and the second factor is defined as the condition number of the matrix consisting of the earthquake excitations. Then, we have performed parametric studies of two factors on numerical stability of the DyRA method. In illustrative example, it was clearly confirmed that the two factors can be used to verify the numerical stability of the proposed DyRA method. However, there exists a difference between the two factors. The first factor showed some overlapping region between the stable results and the unstable results so that it requires some additional reliability analysis to guarantee the stability of the DyRA method. On the contrary, the second factor clearly distinguished the stable and unstable results of the DyRA method without any overlapping region. Therefore, the second factor can be said to be better than the first factor as the criterion to determine whether or not the proposed DyRA method guarantees its numerical stability. In addition, the accuracy of the numerical analysis results of the proposed DyRA has been verified in comparison with those of the existing first-order reliability method(FORM), Monte Carlo simulation(MCS) method and subset simulation method(SSM). The comparative results confirmed that the proposed DyRA method can provide accurate and reliable estimation of the structural failure probability while maintaining the superior numerical efficiency over the existing methods.

크리깅 메타모델을 이용한 신뢰도 계산 (Reliability Estimation Using Kriging Metamodel)

  • 조태민;주병현;정도현;이병채
    • 대한기계학회논문집A
    • /
    • 제30권8호
    • /
    • pp.941-948
    • /
    • 2006
  • In this study, the new method for reliability estimation is proposed using kriging metamodel. Kriging metamodel can be determined by appropriate sampling range and sampling numbers because there are no random errors in the Design and Analysis of Computer Experiments(DACE) model. The first kriging metamodel is made based on widely ranged sampling points. The Advanced First Order Reliability Method(AFORM) is applied to the first kriging metamodel to estimate the reliability approximately. Then, the second kriging metamodel is constructed using additional sampling points with updated sampling range. The Monte-Carlo Simulation(MCS) is applied to the second kriging metamodel to evaluate the reliability. The proposed method is applied to numerical examples and the results are almost equal to the reference reliability.

2단 크리깅 메타모델과 유전자 알고리즘을 이용한 신뢰도 계산 (Reliability Estimation Using Two-Staged Kriging Metamodel and Genetic Algorithm)

  • 조태민;주병현;정도현;이병채
    • 대한기계학회논문집A
    • /
    • 제30권9호
    • /
    • pp.1116-1123
    • /
    • 2006
  • In this study, the effective method for reliability estimation is proposed using tow-staged kriging metamodel and genetic algorithm. Kriging metamodel can be determined by appropriate sampling range and the number of sampling points. The first kriging metamodel is made based on the proposed sampling points. The advanced f'=rst order reliability method is applied to the first kriging metamodel to determine the reliability and most probable failure point(MPFP) approximately. Then, the second kriging metamodel is constructed using additional sampling points near the MPFP. These points are selected using genetic algorithm that have the maximum mean squared error. The Monte-Carlo simulation is applied to the second kriging metamodel to estimate the reliability. The proposed method is applied to numerical examples and the results are almost equal to the reference reliability.

부분안전계수를 이용한 감육배관의 신뢰도 기반 건전성 평가 (Reliability-Based Structural Integrity Assessment of Wall-Thinned Pipes Using Partial Safety Factor)

  • 이재빈;허남수;박치용
    • 한국생산제조학회지
    • /
    • 제22권3_1spc호
    • /
    • pp.518-524
    • /
    • 2013
  • Recently, probabilistic assessments of nuclear power plant components have generated interest in the nuclear industries, either for the efficient inspection and maintenance of older nuclear plants or for improving the safety and cost-effective design of newly constructed nuclear plants. In the present paper, the partial safety factor (PSF) of wall-thinned nuclear piping is evaluated based on a reliability index method, from which the effect of each statistical variable (assessment parameter) on a certain target probability is evaluated. In order to calculate the PSF of a wall-thinned pipe, a limit state function based on the load and resistance factor design (LRFD) concept is first constructed. As for the reliability assessment method, both the advanced first-order second moment (AFOSM) method and second-order reliability method (SORM) are employed to determine the PSF of each probabilistic variable. The present results can be used for developing maintenance strategies considering the priorities of input variables for structural integrity assessments of wall-thinned piping, and this PSF concept can also be applied to the optimal design of the components of newly constructed plants considering the target reliability levels.

자동채염기의 확률론적 구조설계 구현을 위한 신뢰성 해석 응용과 비교연구 (A Reliability Analysis Application and Comparative Study on Probabilistic Structure Design for an Automatic Salt Collector)

  • 송창용
    • 한국기계가공학회지
    • /
    • 제19권12호
    • /
    • pp.70-79
    • /
    • 2020
  • This paper describes a comparative study of characteristics of probabilistic design using various reliability analysis methods in the structure design of an automatic salt collector. The thickness sizing variables of the main structural member were considered to be random variables, including the uncertainty of corrosion, which would be an inevitable hazard in the work environment of the automatic salt collector. Probabilistic performance functions were selected from the strength performances of the automatic salt collector structure. First-order reliability method, second-order reliability method, mean value reliability method, and adaptive importance sampling method were applied during the reliability analyses. The probabilistic design performances such as reliability probability and numerical costs based on the reliability analysis methods were compared to the Monte Carlo simulation results. The adaptive importance sampling method showed the most rational results for the probabilistic structure design of the automatic salt collector.

Serviceability reliability analysis of cable-stayed bridges

  • Cheng, Jin;Xiao, Ru-Cheng
    • Structural Engineering and Mechanics
    • /
    • 제20권6호
    • /
    • pp.609-630
    • /
    • 2005
  • A reliability analysis method is proposed in this paper through a combination of the advantages of the response surface method (RSM), finite element method (FEM), first order reliability method (FORM) and the importance sampling updating method. The accuracy and efficiency of the method is demonstrated through several numerical examples. Then the method is used to estimate the serviceability reliability of cable-stayed bridges. Effects of geometric nonlinearity, randomness in loading, material, and geometry are considered. The example cable-stayed bridge is the Second Nanjing Bridge with a main span length of 628 m built in China. The results show that the cable sag that is part of the geometric nonlinearities of cable-stayed bridges has a major effect on the reliability of cable-stayed bridge. Finally, the most influential random variables on the reliability of cable-stayed bridges are identified by using a sensitivity analysis.

구조물(構造物)의 신뢰도(信賴度) 해석(解析)모델에 관(關)한 연구(硏究) (A Study on Structural Reliability Analysis Models)

  • 이봉학
    • 산업기술연구
    • /
    • 제5권
    • /
    • pp.37-46
    • /
    • 1985
  • Recently-used structural reliability models are studied, and the usage and characteristics of each method are discussed. Although the First-Order Second Moment method may be efficient in structural reliability analysis, it has limitations which the limit state equation is linear and all the variables are normal. In that point, the Advanced Second-Moment(ASM) method have many good results, but computation of iterative method are trublesome. The results of ASM method similar to Variance Reduction Techniques(VRT), which is one of the Monte Carlo simulation methods. As a results, it is concluded that ASM method and VRT method are most efficient one.

  • PDF

교량구조의 체계 신뢰성 해석을 위한 중요도 표본추출 기법 (Importance Sampling Technique for System Reliability Analysis of Bridge Structures)

  • 조효남;김인섭
    • 전산구조공학
    • /
    • 제4권2호
    • /
    • pp.119-129
    • /
    • 1991
  • 본 논문은 교량구조의 체계신뢰도를 추정하기 위한 효율적인 중요도 표본추출기법의 개발을 목적으로 한다. 기존의 체계신뢰성 해석을 위한 방법은 1차 모멘트법, 2차 모멘트법, AFOSM 근사해법, 그리고 시뮬레이션 방법등이 있다. 중요도 표본추출기법은 아주 적은 경비와 노력으로 정확한 해를 구하는 시뮬레이션 방법이다. 적용 예를 통하여 중요도 표본추출기법은 교량구조의 체계신뢰성해석에 아주 효과적인 방법임을 알 수 있었다.

  • PDF

구조 신뢰성 해석방법의 고찰 (A Comparative Study on Structural Reliability Analysis Methods)

  • 양영순;서용석
    • 전산구조공학
    • /
    • 제7권1호
    • /
    • pp.109-116
    • /
    • 1994
  • 구조물의 신뢰도를 평가하는 방법을 살표보고 각각의 장.단점을 비교한다. 각 방법의 정확성을 평가하는 기준으로는 Crude Monte Carlo(CMC)방법을 택하여 Importance Sampling(IS)방법, 그리고 Directional Simulation(DS) 방법을 살펴보고 1차 근사방법은 현재 많이 사용되고 있는 Rackwitz-Fiessler(RF)방법, Chen과 Lind가 제안한 3-parameter방법(CL), Hohenbichler가 제안한 Rosenblatt 변환방법(RT)을 그리고 2차 근사방법은 Breitung이 제안한 곡률적합 포물선 (Curvature Fitted Paraboloid, CFP) 공식과 Kiureghian이 제안한 점적합 포물선(Point Fitted Paraboloid, PFP)공식, 그리고 Log-Likelihood Function을 이용하여 원변수공간에서 파괴확률을 구하는 2차 근사공식(LLF)을 비교한다. 그리고 한계상태식이 불명확할 때 효율적으로 사용할 수 있는 반응응답법(Response sufrace method, RSM)을 살펴본다. 각 방법의 효율성 특히 적용 가능성을 예제를 통해 해석한 결과 추출법의 경우는 DS방법이, 그리고 근사방법에서는 RSM방법이 효율적임을 알 수 있다.

  • PDF