• Title/Summary/Keyword: Second order of solution

Search Result 832, Processing Time 0.023 seconds

A PREDICTOR-CORRECTOR SCHEME FOR THE NUMERICAL SOLUTION OF THE BOUSSINESQ EQUATION

  • Ismail, M.S.;Bratsos, A.G.
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.11-27
    • /
    • 2003
  • A fourth order in time and second order in space scheme using a finite-difference method is developed for the non-linear Boussinesq equation. For the solution of the resulting non-linear system a predictor-corrector pair is proposed. The method is analyzed for local truncation error and stability. The results of a number of numerical experiments for both the single and the double-soliton waves are given.

Implicit Moving Least Squares Difference Method for 1-D Moving Boundary Problem (1차원 자유경계문제의 해석을 위한 Implicit 이동최소제곱 차분법)

  • Yoon, Young-Cheol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.439-446
    • /
    • 2012
  • This paper presents an implicit moving least squares(MLS) difference method for improving the solution accuracy of 1-D free boundary problems, which implicitly updates the topology change of moving interface. The conventional MLS difference method explicitly updates the moving interface; it requires no iterative solution procedure but results in the loss of accuracy. However, the newly developed implicit scheme makes the total system nonlinear involving iterative solution procedure, but numerical verification show that it dramatically elevates the solution accuracy with moderate computation increase. Through numerical experiments for melting problems having moving singularity, it is verified that the proposed method can achieve the second order accuracy.

A Second-Order Adiabatic Analysis Method of Stirling Engines Based on the Approximate Analytical Solution (해석적 근사해에 근거한 스터링기관의 2차단열해석법)

  • 유호선
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.787-794
    • /
    • 1992
  • To predict performances of Stirling Engines, a second-order analysis method has been developed. The present method which is based on the approximate analytical solution to the Ideal Adiabatic Model includes major loss mechanisms due to finite heat transfer and flow friction. Comparison of calculated results with previously reported study for a specific engine shows reasonable agreements and a possibility of being used for basic designs. Also, predicted performances with repect to engine speeds are consistent with experimental data in trend. To improve the prediction capability of this method, it is needed that not only additional losses should be taken into account, but also fundamental characteristics of oscillating flow and heat transfer should be better understood.

Approximation method of nonlinear control system by linearization (비선형제어계의 선형화에 의한 근사해의 연구)

  • 양흥석;김경기
    • 전기의세계
    • /
    • v.22 no.1
    • /
    • pp.28-34
    • /
    • 1973
  • This paper treats with the sub-optimal control problem of noninear systems by approximation method. This method involves the approximation by linearization which provides the sub-optimal solution of non-linear control problems. The result of this work shows that, in the problem in which the controlled plant is characterized by an ordinary differential equation of first order, the solution obtained by this method coincides with the exact solution of problem. In of case of the second or higher order systems, it is proved analytically that this method of linearization produces the sub-optimal solution of the given problem. It is also shown that the sub-optimality of solution by the method can be evaluated by introducing the upper and lower bounded performance indices. Discussion is made on the procedure with some illustrative examples whose performance indices are given in the quadratic forms.

  • PDF

EXISTENCE OF THREE POSITIVE SOLUTIONS OF A CLASS OF BVPS FOR SINGULAR SECOND ORDER DIFFERENTIAL SYSTEMS ON THE WHOLE LINE

  • Liu, Yuji;Yang, Pinghua
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.359-380
    • /
    • 2017
  • This paper is concerned with a kind of boundary value problem for singular second order differential systems with Laplacian operators. Using a multiple fixed point theorem, sufficient conditions to guarantee the existence of at least three positive solutions of this kind of boundary value problem are established. An example is presented to illustrate the main results.

PERTURBATION RESULTS FOR HYPERBOLIC EVOLUTION SYSTEMS IN HILBERT SPACES

  • Kang, Yong Han;Jeong, Jin-Mun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.13-27
    • /
    • 2014
  • The purpose of this paper is to derive a perturbation theory of evolution systems of the hyperbolic second order hyperbolic equations. We give an example of a partial functional equation as an application of the preceding result in case of the mixed problems for hyperbolic equations of second order with unbounded principal operators.

OSCILLATORY OF UNSTABLE TYPE SECOND-ORDER NEUTRAL DIFFERENCE EQUATIONS

  • Zhang, Zhenguo;Ping, Bi;Dong, Wenlei
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.1
    • /
    • pp.87-99
    • /
    • 2002
  • We consider the problem of oscillation and nonoscillation solutions for unstable type second-order neutral difference equation : $\Delta^2(x(n))-p(n)x(n-\tau))=q(n)x(g(n))$. (1) In this paper, we obtain some conditions for the bounded solutions of Eq(1) to be oscillatory and for the existence of the nonoscillatory solutions.

ASYMPTOTIC BEHAVIOUR AND EXISTENCE OF NONOSCILLATORY SOLUTIONS OF SECOND-ORDER NEUTRAL DELAY DIFFERENCE EQUATIONS

  • Li, Xianyi;Zhou, Yong
    • Journal of applied mathematics & informatics
    • /
    • v.11 no.1_2
    • /
    • pp.173-183
    • /
    • 2003
  • In this paper, we give a classification of nonoscillatory solution of a second-order neutral delay difference equation of the form △²(x/sub n/-c/sub n/x/sub n-r/)=f(n, x/sub g1(n)/, …, x/sub gm(n)/). Some existence results for each kind of nonoscillatory solutions we also established.

EXISTENCE OF n POSITIVE SOLUTIONS TO SECOND-ORDER MULTI-POINT BOUNDARY VALUE PROBLEM AT RESONANCE

  • Wang, Feng;Zhang, Fang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.4
    • /
    • pp.815-827
    • /
    • 2012
  • The existence of $n$ positive solutions is established for second order multi-point boundary value problem at resonance where $n$ is an arbitrary natural number. The proof is based on a theory of fixed point index for A-proper semilinear operators defined on cones due to Cremins.

MODIFIED NUMEROV METHOD FOR SOLVING SYSTEM OF SECOND-ORDER BOUNDARY-VALUE PROBLEMS

  • Al-Said, Eisa A.;Noor, Muhammad Aslam
    • Journal of applied mathematics & informatics
    • /
    • v.8 no.1
    • /
    • pp.129-136
    • /
    • 2001
  • We introduce and discuss a new numerical method for solving system of second order boundary value problems, where the solution is required to satisfy some extra continuity conditions on the subintervals in addition to the usual boundary conditions. We show that the present method gives approximations which are better than that produced by other collocation, finite difference and spline methods. Numerical example is presented to illustrate the applicability of the new method. AMS Mathematics Subject Classification : 65L12, 49J40.