• Title/Summary/Keyword: Seawater intrusion

Search Result 126, Processing Time 0.065 seconds

Effects of the Pumping Rate on the Salt Concentration (지하수의 염분농도 변화에 미치는 양수의 영향)

  • Park, Jae-Sung;Lee, Ho-Jin;Kim, Kyoung-Ho;Yun, Young-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1895-1899
    • /
    • 2006
  • Seawater intrusion phenomenons of coastal area happen by natural or artificial factor. For example, density difference of seawater and fresh water, surface of the water change by tidal current, pumping, aggregate picking from mouth of a river, large scale reclamation in water area business etc. This research analyzed effect that groundwater TDS changed by pumping.As a result, it was expose that TDS density increases by sudden inflow of seawater when do pumping up more than $200m^3/day$. Finally, We are expected to prevent calamity by seawater intrusion in coastal area through this study and propose optimum pumping amount to use groundwater safety.

  • PDF

Investigation on Hydraulic Properties According to Artificial Recharge and Extraction (인공 하수 주입 및 양수에 따른 대수층의 수리학적 특성 연구)

  • Kang, Jeong-Ok;Lee, So-Jung;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.9
    • /
    • pp.995-1005
    • /
    • 2005
  • The study with laboratory sandbox model has been carried out to address potential use of reclaimed water, as a countermeasure artificially recharging the coastal aquifer, to effectively prevent from seawater intrusion due to overexploitation. It also investigated plausibility for either preserving or recovering the freshwater interface facing with seawater intrusion. To do this, we assessed hydraulic properties in artificial aquifer seawater/freshwater interface) depending upon the variation of extraction, storage and injection of reclaimed water. The variation of interface between freshwater and seawater were visualized by Surfer 8(Golden Software, USA) according to given experimental conditions. The interface between seawater and freshwater has been sensitively influenced by the change of extraction rate, where seawater zone migrated much faster into freshwater zone even though extraction rate became decreased. However, decreasing recharge rate could slow down moving of saline water zone toward freshwater zone. When the recharge was solely introduced into the sand box model, saline water intrusion was retarded than those of recharge and extraction working together. And also, the level of salinity of saline water was diluted by artificial recharge. It finally revealed that the artificial recharge would hydraulically avoid seawater intrusion while the freshwater sources could be conservatively utilized.

Monitoring of Seawater Intrusion in Unconfined Physical Aquifer Model using Time Domain Reflectometry (자유면 대수층 모형에서의 TIME DOMAIN REFLECTOMETRY를 이용한 해수침투 모니터링)

  • 김동주;하헌철;온한상
    • The Journal of Engineering Geology
    • /
    • v.13 no.1
    • /
    • pp.17-27
    • /
    • 2003
  • In this study, a phenomenon of saltwater intrusion was monitored under various conditions regarding recharge and pumping rate using time domain reflectometry for a laboratory scale unconfined aquifer to verify the basic theory behind seawater intrusion and to investigate movement of salt-freshwater interface in accordance with the ratio of pumping and recharge rate. Results showed that a thick mixing zone was formed at the boundary instead of a sharp salt-freshwater interface that was assumed by Ghyben and Herzberg who derived an equation relating the water table depth $(H_f)$ to the depth to the interface $(H_s)$. Therefore our experimental results did not agree with the calculated values obtained from the Ghyben and Herzberg equation. Position of interface which was adopted as 0.5 g/L isochlor moved rapidly as the Pumping rate $(Q_p)$ increased for a given recharge rate $(Q_r)$. In addition, interface movement was found to be about 7 times the ratio of $Q_p/Q_r$ in our experimental condition. This indicates that Pumping rate becomes an important factor controlling the seawater intrusion in coastal aquifer.

Interpretation of Vertical Electrical Sounding Data in Saltwater Intrusion Area using Geostatistical Method (지구통계분석을 이용한 해수침투지역에서의 전기비저항탐사 자료 해석)

  • Song Sung-Ho;Lee Gyu-Sang;Yong Hwan-Ho;Kim Jin-Sung;Seong Baek-Uk;Woo Myung-Ha
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.59-64
    • /
    • 2005
  • Although experimental analysis for groundwater sample at wells located systematically are very effective to delineate seawater intrusion region at coastal area, this method is restricted in few wells and time. We have conducted electrical resistivity sounding at 30 points in the study areas to analyze the region of seawater intrusion and found the boundary between salt wedge and fresh water lens from the analysis results of geostatistical method using variogram for one-dimensional inversion results. The methodology adopted in this study would be useful for finding the seawater intrusion region and evaluating quantitatively.

  • PDF

An integrated studies for salt-water intrusion in Yeonggwang-gun, Korea

  • Hwang Seho;Chi Sejung;Lee Won-suk;Shin Jehyun;Park Inhwa;Huh Dae-Gee;Lee Sang-kyu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.455-458
    • /
    • 2003
  • A combination of drilling, hydrogeochemical survey, geophysical survey and the numerical modelling for the flow and transport of groundwater was performed to evaluate the seawater intrusion in Baeksu-eup, Yeonggwang-gun, Korea. The survey area extends to over 24 $km^2$. Twelve wells were also drilled for the collection of geologic, geochemical, hydrologic, and geophysical logging data to delineate the degree and vertical extent of seawater intrusion. To evaluate and map the salinity in a coastal aquifer, geophysical data and hydrogeochemical results were used. Layer parameters derived from VES data, various in situ physical properties from geophysical well loggings, and the estimated equivalent NaCl concentration were used as the useful input parameters for the numerical simulation with density-dependent flow. Our multidisciplinary approach for evaluating the seawater intrusion can be considered as a valuable attempt to enhancing the utilization of various data and the reliability of numerical ground modelling.

  • PDF

Quantitative Assessment of Coastal Groundwater Vulnerability to Seawater Intrusion using Density-dependent Groundwater Flow Model (분산형 해수침투 모델을 이용한 양적 지표 기반의 해안지하수 취약성 평가연구)

  • Chang, Sun Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.95-105
    • /
    • 2021
  • Extensive groundwater abstraction has been recognized as one of the major challenges in management of coastal groundwater. The purpose of this study was to assess potential changes of groundwater distribution of northeastern Jeju Island over 10-year duration, where brackish water have been actively developed. To quantitatively estimate the coastal groundwater resources, numerical simulations using three-dimensional finite-difference density-dependent flow models were performed to describe spatial distribution of the groundwater in the aquifer under various pumping and recharge scenarios. The simulation results showed different spatial distribution of freshwater, brackish, and saline groundwater at varying seawater concentration from 10 to 90%. Volumetric analysis was also performed using three-dimensional concentration distribution of groundwater to calculate the volume of fresh, brackish, and saline groundwater below sea level. Based on the volumetric analysis, a quantitative analysis of future seawater intrusion vulnerability was performed using the volume-based vulnerability index adopted from the existing analytical approaches. The result showed that decrease in recharge can exacerbate vulnerability of coastal groundwater resources by inducing broader saline area as well as increasing brackish water volume of unconfined aquifers.

Analysis of the effects of the seawater intrusion countermeasures considering future sea level rise in Yeosu region using SEAWAT (SEAWAT을 이용한 미래 해수면 상승에 따른 여수지역 해수침투 저감 대책 효과 분석)

  • Yang, Jeong-Seok;Lee, Jae-Beom;Kim, Il-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.6
    • /
    • pp.515-521
    • /
    • 2018
  • Seawater intrusion areas were calculated in Yeosu region considering sea level rise and the effects of countermeasures for seawater intrusion were analyzed using SEAWAT program. The estimated seawater intrusion area was $14.90km^2$ in 2015. When we applied climate change scenarios the area was changed to $19.19km^2$ for RCP 4.5 and $20.43km^2$ for RCP 8.5 respectively. The mitigation effects by artificial recharge with total $50m^3/d$, $100m^3/d$, and $300m^3/d$ are from 3.75% to 10.68% for RCP 4.5, and from 5.82% to 10.77% for RCP 8.5 respectively. If we install barrier wall with the thickness 0.8 m, 1.3 m, and 1.8 m, the mitigation effects are from 6.67% to 12.04% for RCP 4.5, and from 6.17% to 14.98% for RCP 8.5 respectively. The results of this study can be used to be a logical means of quantitative grounds for policy decisions to prevent groundwater contamination by seawater intrusion and subsequent secondary damage in coastal areas.

Physical and chemical analyses of ground-water by impacts of tunneling at coastal urban region in Busan (부산시 해안 인근 지역에서의 터널 굴착에 따른 지하수 거동 영향 평가)

  • Kim, Hyoung-Soo;Lee, Ju-Hyun;Ahn, Ju-Hee;Jeong, Ui-Jin;Kim, Jun-Mo;Yoon, Woon-Sang;Chung, Sang-Yong;Lee, Jin-Moo;Woo, Sang-Woo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.457-464
    • /
    • 2005
  • In the case of tunneling, the equilibrium state of hydro-geologic environments destroy and change abruptly in some section of whole works. Specially, it's very possible for seawater to intrude toward the site of tunnel if the field is nearly located in a costal region. In this study, we have evaluated the mechanism related between groundwater flow and seawater intrusion that by impacts of tunneling. Various hydro-geological field tests have performed for getting four representative hydrogeologic properties of geologic formations such as transmissivity (T), storativity(S), longitudial dispersity(${\alpha}_L$), and effective porosity($n_e$). For the effect of tunneling, the numerical model was first simulated based on the governing equation of groundwater flow. The results showed that the maximum drawdown was 17.2m and the total inflow into the tunnel had the range from 0.48 to $3.63m^3/day/m$. Secondly, the three dimensional numerical model was analyzed to investigate a characteristic of seawater intrusion based on the previous simulated results of groundwater flow. The results showed the seawater moved as the range of $200{\sim}220m$ from the initial interface between seawater and groundwater toward the tunnel.

  • PDF

Fresh Water Injection Test in a Fractured Bedrock Aquifer for the Mitigation of Seawater Intrusion (해수침투 저감을 위한 균열암반 대수층 내 담수주입시험)

  • Shin, Je-Hyun;Byun, Joong-Moo
    • Economic and Environmental Geology
    • /
    • v.43 no.4
    • /
    • pp.371-379
    • /
    • 2010
  • Fresh water injection test in a fractured bedrock aquifer was applied as an efficient approach to lower saline concentrations in the saltwater-freshwater transition zone formed by seawater intrusion in a coastal area. The methodology and effectiveness of fresh water injection for hydraulically controlling seawater intrusion is overwhelmingly site dependent, and there is an urgent need to characterize the permeable fractures or unconsolidated porous formations which can allow for seawater flow and transport. Considering aquifer characteristics, injection and monitoring boreholes were optimally designed and completed to inject fresh water through sand layer and fractured bedrock, respectively. We devised and used the injection system using double packer for easy field operation and maintenance. Overall fracture distribution was systematically identified from borehole image logs, and the section of fresh water injection was decided from injection test and monitoring. With fresh water injection, the fluid electrical conductivity of the monitoring well started to be lowered by the inflow of fresh water at the specific depth. And this inflow leaded to the replacement of the fluid in the upper parts of the borehole with fresh water. Furthermore, the injection effect lasted more than several months, which means that fresh water injection may contribute to the mitigation of seawater intrusion in a coastal area.

Application of Geographic Information System for Synthetic Analysis of Multidisciplinary Data in Seawater Intrusion Assessment (해수침투 조사자료의 통합적 해석을 위한 GIS의 적용)

  • Choi Sun-Young;Hwang Seho;Park Kwon Gyu;Shin Je-Hyun;Yoon Wang-Jung
    • Spatial Information Research
    • /
    • v.12 no.3
    • /
    • pp.275-283
    • /
    • 2004
  • In order to effectively, and accurately assess seawater intrusion in coastal area, multidisciplinary data including geophysical, well logging, and hydrogeochemical data should be managed in systematical way. Such systematical management of data is critical key to improve the re-usability of the data as well as the accuracy of the assessment by means of providing a method of synthetic analysis. Therefore, for systematical management of multidisciplinary data in seawater intrusion problem, we have developed a database management system and 3-D visualization interface based on geographic information system in this, study. All geophysical survey, well logging, hydrochemical, as well as drilling, data are classified as attribute data using Microsoft Access, and joined with spatial information based on ArcView. The database management system and 3-D visualization interface to handle these data, also, developed using the script language of ArcView. We think the development of database and 3-D visualization system will improve the efficiency of data management, user-friendliness of data access, and accuracy of data analysis.

  • PDF