DOI QR코드

DOI QR Code

Analysis of the effects of the seawater intrusion countermeasures considering future sea level rise in Yeosu region using SEAWAT

SEAWAT을 이용한 미래 해수면 상승에 따른 여수지역 해수침투 저감 대책 효과 분석

  • Yang, Jeong-Seok (School of Civil and Environmental Engineering, Kookmin University) ;
  • Lee, Jae-Beom (School of Civil and Environmental Engineering, Kookmin University) ;
  • Kim, Il-Hwan (School of Civil and Environmental Engineering, Kookmin University)
  • 양정석 (국민대학교 건설시스템공학부) ;
  • 이재범 (국민대학교 건설시스템공학부) ;
  • 김일환 (국민대학교 건설시스템공학부)
  • Received : 2018.03.05
  • Accepted : 2018.03.19
  • Published : 2018.06.30

Abstract

Seawater intrusion areas were calculated in Yeosu region considering sea level rise and the effects of countermeasures for seawater intrusion were analyzed using SEAWAT program. The estimated seawater intrusion area was $14.90km^2$ in 2015. When we applied climate change scenarios the area was changed to $19.19km^2$ for RCP 4.5 and $20.43km^2$ for RCP 8.5 respectively. The mitigation effects by artificial recharge with total $50m^3/d$, $100m^3/d$, and $300m^3/d$ are from 3.75% to 10.68% for RCP 4.5, and from 5.82% to 10.77% for RCP 8.5 respectively. If we install barrier wall with the thickness 0.8 m, 1.3 m, and 1.8 m, the mitigation effects are from 6.67% to 12.04% for RCP 4.5, and from 6.17% to 14.98% for RCP 8.5 respectively. The results of this study can be used to be a logical means of quantitative grounds for policy decisions to prevent groundwater contamination by seawater intrusion and subsequent secondary damage in coastal areas.

본 연구에서는 SEAWAT을 이용하여 여수지역의 해수침투 피해 면적을 파악하고, 기후변화 시나리오 적용에 따른 미래의 해수침투 피해 예상 면적을 산출하였으며 해수침투 피해 저감 대책의 피해면적 저감 능력을 분석하였다. 2015년 기준 여수지역의 해수침투 피해 면적은 $14.90km^2$로 나타났고, 기후변화 시나리오를 적용하였을 때 2099년 여수지역의 예상 해수침투 피해 면적은 RCP 4.5의 경우 $19.19km^2$이며, RCP 8.5의 경우 $20.43km^2$로 나타났다. 이에 대한 저감대책으로 인공함양을 고려하였을 때, 총 $300m^3/d$, $100m^3/d$, $50m^3/d$의 함양 시나리오를 설정하였을 때 RCP 4.5의 경우 해수침투 면적은 평균 7.03%, RCP 8.5의 경우 8.32% 감소하였다. 물리적 차수벽 대책의 경우는 차수벽의 두께를 0.8 m, 1.3 m, 1.8 m로 설정하였을 때 RCP 4.5의 경우 해수침투 면적은 평균 9.80%, RCP 8.5의 경우 10.30% 감소하였다. 본 연구는 연안지역의 해수에 의한 지하수 오염과 그에 수반한 2차적인 피해를 막기 위한 대비책을 결정하기 위한 정량적인 근거로서 사용될 수 있을 것으로 기대된다.

Keywords

References

  1. Abdoulhalik, A., Ahmed, A., and Hamill, G. A. (2017) "A new physical barrier system for seawater intrusion control." Journal of Hydrology, Vol. 549, pp. 416-427. https://doi.org/10.1016/j.jhydrol.2017.04.005
  2. Amira, M., and Abderrazek, S. (2016). "The effectiveness of artificial recharge by treated wastewater in combating seawater intrusion - The case study of Korba-El Mida aquifer (Cape bon, Tunisia)." International Journal of Innovation and Applied Studies, Vol. 15, No. 2, pp. 264-274.
  3. Guo, W., and Langevin, C. D. (2002). User's guide to SEAWAT; a computer program for simulation of three-dimensional variable-density ground-water flow. No. 06-A7.
  4. Harne, S., Chaube, U. C., Sharma, S., Sharma, P., and Parkhya, S. (2006). "Mathematical modelling of salt water transport and its control in groundwater." Natural and Science, Vol. 4, No. 4, pp. 32-39.
  5. IPCC (2012). Climate change 2012:The physical science synthesis report. Cambridge University Press, Cambridge.
  6. IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the 5th Assessment Report of the Intergovernmental Panelon Climate Change. Geneva, Switzerland.
  7. Jung, E. T., Lee, S. J., Lee, M. J., and Park, N. S. (2014). "Effectiveness of double negative barriers for mitigation of seawater intrusion in coastal aquifer: sharp-interface modeling investigation." Journal of Korea Water Resources Association, Vol. 47, No. 11, pp. 1087-1094. https://doi.org/10.3741/JKWRA.2014.47.11.1087
  8. Jung, E. T., Park, N. S., and Cho, K. W. (2017). "Composite model for seawater intrusion in groundwater and soil salinazation due to sea level rise." Journal of Korea Water Resources Association, Vol. 50, No. 6, pp. 387-395. https://doi.org/10.3741/JKWRA.2017.50.6.387
  9. Kim, S. G. (2014). "Development of reclaimed farm lands for future agriculture." Proceedings Symposium on Revitalization of Agriculture in Reclaimed Land, Grand Hall, aT Center, Korea Rural Community Corporation and Rural Development Administration, pp. 83-99.
  10. Korea Hydrographic and Oceanographic Agency (2015). Over the past 40 years, sea level has risen about 10 cm. December 16, 2015.
  11. Lee, C.-E., Kim, S. U., and Lee, Y. S. (2014). "Estimation of the regional future sea level rise using long-term tidal data in the Korean peninsula." Journal of Korea Water Resources Association, Vol. 47, No. 9, pp. 753-766. https://doi.org/10.3741/JKWRA.2014.47.9.753
  12. Lee, W. D., Jeong, Y. H., and Hur, D. S. (2015). "Numerical simulation of seawater intrusion in coastal aquifer using N-S solver based on porous body model." Journal of Korea Water Resources Association, Vol. 48, No. 12, pp. 1023-1035. https://doi.org/10.3741/JKWRA.2015.48.12.1023
  13. Luyun, R., Momii, K., and Nakagawa, K. (2011). "Effects of recharge wells and flow barriers on seawater intrusion." Ground Water, Vol. 49, No. 2, pp. 239-249. https://doi.org/10.1111/j.1745-6584.2010.00719.x
  14. Mahesha, A. (1996). "Steady - state effect of freshwater injection on seawater intrusion." Journal of Irrigation and Drainage Engineering, Vol. 122, No. 3, pp. 149-154. https://doi.org/10.1061/(ASCE)0733-9437(1996)122:3(149)
  15. Ministry of Agriculture, Food and Rural (2017). Seawater intrusion research report. Ministry of Agriculture, Food and Rural, pp. 445-457.
  16. Ministry of Land, Transport and Maritime Affairs (2008). Basic groundwater investigation report of Yeosu region. pp. 94-97.
  17. National Institute of Meteorological Science (2012). 2012 Earth climate change report for correspondence of IPCC AR5, National Institute of Meteorological Science, pp. 46-51.
  18. Noorabadi, S., Sadraddini, A. A., Nazemi, A. H., and Delirhasannia, R. (2017). "Laboratory and numerical investigation of saltwater intrusion into aquifers." Journal of Materials and Environmental Sciences, Vol. 8, No. 12, pp. 4273-4283. https://doi.org/10.26872/jmes.2017.8.12.450
  19. Papadopoulou, M. P., Karatzas, G. P., Koukadaki, M. A., and Trichakis, Y. (2005). "Modeling the saltwater intrusion phenomenon in coastal aquifers-A case study in the industrial zone of Herakleio in Crete." Global NEST J, Vol. 7, No. 2, pp. 197-203.
  20. Rastogi, A. K., Choi, G. W., and Ukarande, S. K. (2004). "Diffused interface model to prevent ingress of sea water in multi-layer coastal aquifers." Journal of Spatial Hydrology, Vol. 4, No. 2.