• Title/Summary/Keyword: Seawater heat

Search Result 153, Processing Time 0.025 seconds

Effect of corrosion environment on the SCC of Al-brass tube for vessel (선박용 Al-황동세관의 SCC에 미치는 부식환경의 영향)

  • 임우조;정해규
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.291-297
    • /
    • 2003
  • Al-brass is usually used as the tube material of vessel's heat exchanger for seawater cooling system because it has high thermal conductivity and good mechanical properties and high corrosion resistance due to cuprous oxide (Cu20) layer against seawater. However, Al-brass tubes of heat exchanger for vessel at the actual environment is reported that local corrosion such as stress corrosion cracking occurred by synergism effect between mechanical factor and corrosion environment In this paper, the effect of corrosion environment on the stress corrosion cracking of Al-brass in various NH4OH of 3.5% NaCl solution, under flow by constant displacement tester. Based on the test results, the behavior of polarization, stress corrosion crack propagation and dezincification phenomenon of Al-brass are investigated. The main results are as follows:(1) Increasing range of potential from open circuit potential to repassivation gets lower, as the contain rate of NH4OH gets higher. (2) As contain rate of NH4OH gets higher, SCC of Al-brass is become activation but the protection film(Cu20) of Al-brass is created in 3.5% NaCl solution. (3) According as content of NH4OH increases in 3.5% NaCl solution, the dezincifiction area is spread. It is concluded that dezincification occurred by localized preferential anodic dissolution at stress focusing region.

Application of Load by Purpose of Buildings for Application of Seawater District Cooling and Heating System in Jeju Area (제주 지역의 해수열원 지역냉난방 시스템 적용을 위한 건축물 용도별 냉난방 부하량 분석 및 적용방안)

  • Park, Jin-Young;Park, Jea-Hong;Kim, Sam-Uel;Chang, Ki-Chang
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.2
    • /
    • pp.86-90
    • /
    • 2014
  • It is important to select an optimal capacity for equipment, because the initial cost of new and renewable energy system is more expensive than that of exiting system. An optimal equipment and enhanced rate of operation can be selected, to analyze the cooling and heating load of buildings. In this study, seawater heat pump system in the Jeju area will be applied, by the heat source equipment of district heating. The loads of buildings are analyzed from existing researches, to select optimal capacity of equipment. Also, an optimal rate of building use will be set up, from a combination of buildings.

Electrochemical Corrosion Evaluation of Aluminum Alloy Weldment Prepared by GMAW Process (알루미늄 합금 GMAW 용접부의 전기화학적 방법에 의한 내식성 평가)

  • Yang, Ye-Jin;Park, Il-Cho;Lee, Jung-Hyung;Han, Min-Su;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.6
    • /
    • pp.498-503
    • /
    • 2017
  • The aim of the present study is to evaluate electrochemical corrosion characteristics of base metal and weldment of Al-Mg alloy in seawater solution. The specimen was 5mm thick 5083-H321 Al alloy plate which was butt-welded using gas metal arc welding (GMAW). To identify the types of inclusions in the weldment, the microstructural observation was performed along with Energy dispersive spectrometer (EDS) analysis. The anodic polarization experiments were performed to evaluate the corrosion characteristics. After the anodic polarization test, the corroded surface was observed by SEM(scanning electron microscope) and EDS. The result of the analysis revealed a large number of voids in the weldment, especially coarse grains and inclusions in the heat affected zone. The corrosion current density of the weldment was found to be approximately 13 times higher than that of the base metal, indicating lower corrosion resistance of the weldment due to the defects in the weldment and the heat affected zone.

Exothermic Oil Absorbent Sheet for Low-sulfur Fuel Oil (LSFO) Spilled into Seawater in the Winter Season (동절기 해상으로 유출된 저유황 중질유 제거를 위한 발열 흡착포)

  • Park, Han-gyu;Oh, Gyung-geun;Bae, Byung-Uk;Song, Young-Chae
    • Journal of Navigation and Port Research
    • /
    • v.46 no.4
    • /
    • pp.297-302
    • /
    • 2022
  • An exothermic oil absorbent sheet with calcium chloride crystals can be fabricated, by dipping a clean polypropylene fabric in calcium carbonate and hydrochloric acid solution and drying it. The exothermic oil absorbent sheet applied to the seawater surface, releases heat by the dissociation of calcium chloride. The dissociation heat liquefies the solidified low-sulfur fuel oil at a low temperature, and converts it to a state at which it can be absorbed. The optimum mole concentrations of calcium carbonate and hydrochloric acid required for the exothermic oil absorbent sheet, are 0.25 M and 0.5 M, respectively. The oil absorption capacity of the exothermic oil absorbent sheet for low sulfur fuel oil depends on the seawater temperature. But, it is highly excellent at 4.5-7.08 g/g at 10℃, the average seawater temperature during the winter in Korea. The exothermic oil absorbent sheet is an excellent alternative in absorbing low-sulfur fuel oil in winter and removing it from seawater.

Calculation of non-condensable gases released in a seawater evaporating process (해수 증발과정에서의 기체방출량 계산)

  • Jeong, Kwang-Woon;Chung, Hanshik;Jeong, Hyomin;Choi, Soon-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.182-190
    • /
    • 2017
  • All liquids contain a small amount of gaseous components and the amount of gases dissolved in a liquid is in accordance with Henry's Law. In a multi-stage thermal-type seawater desalination plant, as the supplied seawater undergoes variations in temperature and pressure in each evaporator, the gases dissolved in the seawater are discharged from the liquid. The discharged gases are carbon dioxide, nitrogen, oxygen, and argon, and these emitted gases are non-condensable. From the viewpoint of convective heat transfer, the evaluation of non-condensable gas released during a vacuum evaporation process is a very important design factor because the non-condensable gases degrade the performance of the cooler. Furthermore, in a thermal-type seawater desalination plant, most evaporators operate under vacuum, which maintained through vacuum system such as a steam ejector or a vacuum pump. Therefore, for the proper design of a vacuum system, estimating the non-condensable gases released from seawater is highly crucial. In the study, non-condensable gases released in a thermal-type seawater desalination plant were calculated quantitatively. The calculation results showed that the NCG releasing rate decreased as the stage comes getting a downstream and it was proportional to the freshwater production rate.

Flow Distributions in the Channel of Plate Heat Exchanger Applied in Vacuum Evaporating Distiller System

  • Jin, Zhen-Hua;Park, Gi-Tae;Choi, Soon-Ho;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.389-394
    • /
    • 2008
  • Nowadays Plate Heat Exchanger (PHE) is widely used in different industries such as chemical, food and pharmaceutical process and refrigeration due to the efficient heat transfer performance, extreme compact design and efficient use of the construction material. In present work, PHE is applied in the fresh water generator system. Fresh water generators or desalinators are installed in ship to convert seawater to fresh water using heat from engines. PHE is an important part of a condensing or evaporating system. Among many of factors which should be concentrated on, the heat transfer and pressure drop is most important parts during sizing and rating the performance of PHE. Flow maldistribution is common but it will significantly reduce the heat exchanger performance. In this paper provide a overview of PHE cover basic of theory and conduct a numerical approach for flow distribution in plate channel. An experimental study on the performance of fresh water generator system which developed by plate heat exchanger will presented in future research. Thus, extensive experiment and analysis is required to study the thermal and fluid flow characteristics of PHE.

  • PDF

Seasonal Variation of Heat Content in the Neighbouring Seas of Korea (韓國 周邊 海洋 貯熱量의 秀節的 變動)

  • Gang, Yong-Gyun
    • 한국해양학회지
    • /
    • v.20 no.3
    • /
    • pp.1-5
    • /
    • 1985
  • Seasonal variations of heat content in the neighbouring seas of Korea are estimated from the bimonthly normals of seawater temperature in the upper 300m for 15 years (1961~1975) at 192 stations. The heat is seasonally stored mainly in the upper 100m layer in the East Sea and in the whole water column in the West and South Seas of Korea. The annual range of heat content changes in the West Sea is almost the same as that in the East Sea. The annual phase of heat content variation lags behind that of sea surface temperature variation by one to three months. Due to the seasonal advections of heat by currents and winds, the annual amplitude of heat storage rate in the neighbouring seas of Korea is much larger than that of incoming radiation.

  • PDF

Performance Analysis of WHR-ORC Using Hydrocarbon Mixtures for 20kW Gross Power at Low Temperature

  • Kwakye-Boateng, Patricia;Yoon, Jung-In;Son, Chang-Hyo;Hui, Kueh Lee;Kim, Hyeon-Uk
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.140-145
    • /
    • 2014
  • Exploitation of renewable energies is on the increase to mitigate the reliance on fossil fuels and other natural gases with rocketing prices currently due to the depletion of their reserves not to mention their diverse consequences on the environment. Divergently, there are lots of industries "throwing" heat at higher temperatures as by products into the environment. This waste heat can be recovered through organic Rankine systems and converted to electrical energy with a waste heat recovery organic Rankine cycle system (WHR-ORC). This study uses the annual average condenser effluent from Namhae power plant as heat source and surface seawater as cooling source to analyze a waste heat recovery organic Rankine cycle using the Aspen HYSYS simulation software package. Hydrocarbon mixtures are employed as working fluid and varied in a ratio of 9:1. Results indicate that Pentane/Isobutane (90/10) mixture is the favorable working fluid for optimizing the waste heat recovery organic Rankine cycle at the set simulation conditions.

Performance and Availability of Seawater Distiller with Heat Pipe Utilizing Low-Grade Waste Heat (저급 폐열 이용 히트파이프 해수담수기의 성능과 유용성)

  • Park, Chang-Dae;Chung, Kyung-Yul;Tanaka, Hiroshi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.1
    • /
    • pp.81-86
    • /
    • 2013
  • Exhaust gas from a small portable electric generator is simply exhausted to the surroundings because the capacity and quality of the waste heat of this gas is generally not sufficient to recover and utilize. We have proposed a seawater distiller utilizing the thermal energy of waste gas from an electric generator. The distiller recovers heat from the waste gas by means of a heat pipe and uses it effectively through a multiple-effect diffusion-type structure. We constructed an experimental apparatus with a vertical single-effect still having a 4-stroke 50 cc generator engine and found that the experimental results for distillate productivity show good agreement with the theoretical predictions. The results show that the distiller can recover 52 W of waste heat from the gas at $171^{\circ}C$, and ~85% of the recovered heat can be utilized for distillation to produce 70 g/h of fresh water. This is equivalent to a productivity of 500 g/h in the case of a 10-effect still. Therefore, the proposed distiller should be useful in remote areas where electricity and water grids are inadequate.

Immersion Corrosion Characteristic of SUS420J2 Steel with a Material for Fish Pre-Processing Machinery (어류 전처리 가공기계용 재료 SUS420J2강의 침지부식 특성)

  • 김선진;안석환;최대검;정현철;김상수
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.38 no.1
    • /
    • pp.79-88
    • /
    • 2002
  • 13%Cr martensitic stainless steel has been used mainly with a material for fish pre-processing machinery. However, it has not very nice cutting section because of little of the carbon content. Therefore, SUS420J2 steel that contents 0.3%C with high-strength in spite of the rust is used with a material for fish pre-processing machinery. However, studies on the corrosion characteristics of SUS420J2 steel are relatively rare. Especially, the corrosion phenomenon may cause serious degradation because the fish pre-processing machinery is exposed always to seawater environment. In this paper, the immersion corrosion test was carried out at seawater environment (pH=7.52) on SUS420J2 steel specimens that have various post-treatment conditions and its corrosion characteristics were evaluated. From test results, the specimens such as base metal, vacuum heat treatment, electrolytic polishing and tempering after quenching tend somewhat sensitive from the corrosion. In the case of vacuum heat treatment specimen of continuous immersion during 360 days, the weight loss ratio was high about seven times when compared with the different specimens. On the contrary, SUS420J2 steel specimen that has the heat treatment of tempering after quenching and the electrolytic polishing was less sensitive from the corrosion, and the weight loss ratio was very low.