DOI QR코드

DOI QR Code

Calculation of non-condensable gases released in a seawater evaporating process

해수 증발과정에서의 기체방출량 계산

  • Jeong, Kwang-Woon (DSME Co., Ltd.) ;
  • Chung, Hanshik (Department of Energy and Mechanical Engineering, Institute of Marine Industry, Gyeongsang National University) ;
  • Jeong, Hyomin (Department of Energy and Mechanical Engineering, Institute of Marine Industry, Gyeongsang National University) ;
  • Choi, Soon-Ho (Department of Energy and Mechanical Engineering, Institute of Marine Industry, Gyeognsang National University)
  • Received : 2016.09.19
  • Accepted : 2017.03.13
  • Published : 2017.03.31

Abstract

All liquids contain a small amount of gaseous components and the amount of gases dissolved in a liquid is in accordance with Henry's Law. In a multi-stage thermal-type seawater desalination plant, as the supplied seawater undergoes variations in temperature and pressure in each evaporator, the gases dissolved in the seawater are discharged from the liquid. The discharged gases are carbon dioxide, nitrogen, oxygen, and argon, and these emitted gases are non-condensable. From the viewpoint of convective heat transfer, the evaluation of non-condensable gas released during a vacuum evaporation process is a very important design factor because the non-condensable gases degrade the performance of the cooler. Furthermore, in a thermal-type seawater desalination plant, most evaporators operate under vacuum, which maintained through vacuum system such as a steam ejector or a vacuum pump. Therefore, for the proper design of a vacuum system, estimating the non-condensable gases released from seawater is highly crucial. In the study, non-condensable gases released in a thermal-type seawater desalination plant were calculated quantitatively. The calculation results showed that the NCG releasing rate decreased as the stage comes getting a downstream and it was proportional to the freshwater production rate.

모든 액체는 소량의 기체성분들이 녹아있으며, 액체에 용해되는 기체의 양은 액체에 작용하는 주위압력에 기여하는 각 기체성분의 분압에 비례한다는 헨리의 법칙을 따른다. 따라서 다단증발식 해수담수화설비의 경우, 각 증발단의 운전온도와 압력은 다르며, 이 운전조건에 비례하여 해수에 용해되어 있던 기체들이 증발과정에서 방출되는데 주성분은 불응축기체인 이산화탄소, 질소, 산소 및 아르곤이다. 대류열전달의 입장에서는 불응축기체는 증발증기를 응축시키는 냉각기의 성능을 저하시키는 주요한 원인이기 때문에 증발과정에서 방출되는 불응축기체의 평가는 증발식 해수담수화설비에서 중요한 설계인자 중의 한가지이다. 증발식 해수담수화공정의 경우, 대부분의 증발기는 진공압력으로 유지되기 때문에 진공유지장치의 설계를 위해서는 증발과정에서 해수로부터 방출되는 불응축기체의 방출량을 평가하는 것이 매우 중요다. 본 연구는 불응축기체의 방출량을 정량적으로 계산하기 위해 수행하였으며, 연구결과에 따르면 불응축가스의 방출량은 후단으로 갈수록 감소하며, 담수생산량에 비례함을 알 수 있었다.

Keywords

References

  1. P. J. Fellows, Food Processing Technology: Principles and Practice, CRC Press, New York, 2009.
  2. Z. Amjad, The Science and Technology of Industrial Water Treatment, CRC Press, New York, 2010.
  3. J. Cotruvo, N. Voutchkov, J. Fawell, P. Payment, D. Cunliffe, and S. Lattemann, Desalination Technology: Health and Environmental Impacts, CRC Press, New York, 2010.
  4. D. Y. Choi, C. B. Kim, S. Y. Song, S. -H. Choi, H. S. Chung, and P. H. Kim, "A study on the MED-TVC operating performance characteristics of using the thermo-compressor-I," Journal of the Korean Society of Marine Engineering, vol. 32, no. 8, pp. 1185-1191, 2008 (in Korean). https://doi.org/10.5916/jkosme.2008.32.8.1185
  5. H. K. Engelien and S. Skogestad, "Multi-effect distillation applied to an industrial case study," Chemical Engineering and Processing, vol. 44, no. 8, pp. 819-826, 2005. https://doi.org/10.1016/j.cep.2004.06.015
  6. A. Cipollina, G. Micale, and L. Rizzuti, Seawater Desalination: Conventional and Renewable Energy Processes, Elsevier Science Bearbeited Von, Amsterdam, 2009.
  7. H. E. S. Fath and M. A. Ismail, "Enhancing the part load operational performance of MSF desalination plants," The 13th International Water Technology Conference, Hurghada, Egypt, pp. 1479-1487, 2009.
  8. P. Godino, L. Pefia, and J. I. Mengual, "Membrane distillation: theory and experiment," Journal of Membrane Science, vol. 121, pp. 83-93, 1996. https://doi.org/10.1016/0376-7388(96)00162-7
  9. P. Glueckstern, "Comparative energy requirements and economic of desalting processes based on current and advanced technologies," Desalination, vol. 40, no. 1-3, pp. 63-74, 1982. https://doi.org/10.1016/S0011-9164(00)88668-3
  10. A. Ophir and A. Gendel, "Steam driven large multi effect MVC (SD MVC) desalination process forlower energy consumption and desalination costs," Desalination, vol. 205, no. 1-3, pp. 224-230, 2007. https://doi.org/10.1016/j.desal.2006.04.046
  11. T. Hoepner and S. Lattemann, "Chemical impacts from seawater desalination plants a case study of the northern Red Sea," Desalination, vol. 152, pp. 133-140, 2003. https://doi.org/10.1016/S0011-9164(02)01056-1
  12. Dawoud Mohamed A. and Al Mulla Mohamed M., "Environmental impacts of seawater desalination: Arabian Gulf case study," International Journal of Environment & Sustainability, vol. 1, no. 3, pp. 22-37, 2012.
  13. M. A. El-Shenawy and A. E. Farag, "Spatial and temporal variability of saprophytic and water quality bacteria along the coast of the Aqaba and Suez Gulfs and Red Sea," Egypt Microbial Ecology Health & Disease, vol. 17, no. 2, pp. 94-102, 2005. https://doi.org/10.1080/08910600510037217
  14. A. Al-Karaghouli and L. L. Kazmerski, "Energy consumption and water production cost of conventional and renewable energy-powered desalination processes," Renewable and Sustainable Energy Reviews, vol. 24, pp. 343-356, 2013. https://doi.org/10.1016/j.rser.2012.12.064
  15. A. Ophir and A. Gendel, "Steam driven large multi effect MVC (SD MVC) desalination process for lower energy consumption and desalination costs," Desalination, vol. 205, pp. 224-30, 2007. https://doi.org/10.1016/j.desal.2006.04.046
  16. S. H. Choi, "On the brine re-utilization of a multi-stage flashing (MSF) desalination plant," Desalination, vol. 398, pp. 64-76, 2016. https://doi.org/10.1016/j.desal.2016.07.020
  17. I. S. Al-Mutaz, "A comparative study of RO and MSF desalination plants," Desalination, vol. 106, pp. 99-106, 1996. https://doi.org/10.1016/S0011-9164(96)00097-5
  18. N. Ghaffour, T. M. Missimer, and G. L. Amy, "Technical review and evaluation of the economics of water desalination: current and future challenges for better water supply sustainability," Desalination, vol. 309, pp. 197-207, 2013. https://doi.org/10.1016/j.desal.2012.10.015
  19. D. J. Shah and C. G. Bhagchandani, "Design, modelling and simulation of multiple effect evaporators, International of Scientific Engineering and Technology," vol. 1, no. 3, pp. 01-05, 2012.
  20. A. A. Tofigh and G. D. Najafpour, "Technical and economical evaluation of desalination processes for portable water from seawater," Middle-East Journal of Scientific Research, vol. 12, no. 1, pp. 42-45, 2012.
  21. D. Zhao, J. Xue, S. Li, H. Sun, and Q. D. Zhang, "Theoretical analyses of thermal and economical aspects of multi-effect distillation desalination dealing with high-salinity wastewater," Desalination, vol. 273, no. 2-3, pp. 292-298, 2011. https://doi.org/10.1016/j.desal.2011.01.048
  22. H. Glade and A. E. Al-Rawajfh, "Modeling of CO2 release and the carbonate system in multiple-effect distillers," Desalination, vol. 222, no. 1-3, pp. 605-625, 2007. https://doi.org/10.1016/j.desal.2007.02.069
  23. C. S. Song, "A study on the required energy of a thermal type desalination plant," Journal of the Korean Society of Marine Engineering, vol. 38, no. 9 pp. 1094-1100, 2014 (in Korean). https://doi.org/10.5916/jkosme.2014.38.9.1094
  24. S. Shen, S. Zhou, Y. Yang, L. Yang, and X. Liu, "Study of steam parameters on the performance of a TVC-MED desalination plant," Desalination and Water Treatment, vol. 33, no. 1-3, pp. 300-308, 2011. https://doi.org/10.5004/dwt.2011.2653
  25. H. S. Chung, H. M. Jeong, K. W. Jeong, S. H. Choi, "Improved productivity of the MSF (multistage Flashing) desalination plant by increasing the TBT (top brine temperature)," Energy, vol. 107, pp. 683-692, 2016. https://doi.org/10.1016/j.energy.2016.04.028
  26. Y. A. Cengel and J. M. Cimbara, Fluid Mechanics-Fundamentals and Applications, McGraw-Hill, New York, 2006.
  27. H. T. El-Dessouky and H. M. Ettouney, Fundamentals of Salt Water Desalination, Elsevier, Amsterdam, 2002.
  28. S. E. Kim and H. D. Kim, "A review of non-condensable gas effects on film condensation heat transfer in vertical and horizontal tubes," KSME, Spring & Autumn Conferences, The Korean Society of Mechanical Engineers, pp. 713-718, 2013 (in Korean).
  29. P. Atkins and J. de Paula, 'ATKINS' PHYSICAL CHEMISTRY, W. H. Freeman and Company, New York, 2006.
  30. von Herrn M.Sc. Aiman Eid Al-Rawajfeh, Modelling and Simulation of CO2 Release in Multiple-Effect Distillers for Seawater Desalination, Ph. D Thesis, Martin-Luther-University, Germany, 2004.
  31. C. Borgnakke and R. E. Sonntag, Fundamentals of Thermodynamics (7th Ed.), John Wiley & Sons, Inc., New York, 2009.