• 제목/요약/키워드: Seating Pressure Distribution

검색결과 14건 처리시간 0.029초

자동차 운전석의 주관적 안락감평가와 체압분포간의 관계에 관한 연구 (An investigation of the relationship between subjective comfort evaluation and body pressure distribution of vehicle seats)

  • 박세진;이남식;이순요
    • 대한인간공학회지
    • /
    • 제12권1호
    • /
    • pp.3-15
    • /
    • 1993
  • The pressure distribution between human body and seat surface has been considered as an important factor affecting seating comfort. However, it is rare to find general guidelines of how to analyze these pressure patterms related to the seating comfort. In order to investigate the relationship between the pressure patterns and the subjective feeling of seating comfort, a high-resolution body pressure measurement system was adopted. The measured patterns showed that the clear distinctions between the comfortable seats. It was also possible to estimate the seating comfort based upon the analysis of the pressure patterns. The further research will be focused on finding out the relationship between physical seat design parameters and the seating discomfort.

  • PDF

운전석 체압분포 기반의 착좌전략 분류 (A Classification of Sitting Strategies Based on Seating Pressure Distribution)

  • 최영근;박장운;이백희;정기효;사성진;유희천
    • 대한산업공학회지
    • /
    • 제39권2호
    • /
    • pp.105-108
    • /
    • 2013
  • Drivers' sitting strategies are considered in car seat design. Existing research has identified representative sitting strategies by visual inspection of seating pressure measurements collected from a small sample size of drivers. The present study recruited 20 female and 20 male participants, measured seating pressure, and classified sitting strategies by cluster analysis. The participants' sitting postures were classified based on seating pressure distribution into mid-back and scapular, mid-back and lumbar, and lumbar sitting strategies for the upper body and hip concentrated, hip and mid-thigh concentrated, and hip and mid-thigh distributed sitting strategies for the lower body. The effects of gender and occupant package layout (OPL) on sitting strategy were nout found significant. The identified sitting strategies would be of use for the design and evaluation of an OPL and a seat.

자동차 시트의 안락감 평가 방법 연구 (A Study on the Development of Comfort Evaluation Method for Automotive Seat)

  • 남윤의;이영신;박세진;민병찬
    • 대한산업공학회지
    • /
    • 제25권1호
    • /
    • pp.75-86
    • /
    • 1999
  • The improvement of automotive seating system, particularly for the driver, has been the subject of intense interest. In this study, the methods for evaluating the seating comfort are investigated. A subjective evaluation has been the general method for evaluating the seating comfort of automotive seat. Therefore, the survey using the roadside interview is conducted. In addition, the subjective evaluation with a questionnaire using the laboratory set-up is investigated. With this subjective evaluation, in order to evaluate the comfort objectively, the body pressure distribution, seat physical characteristics and eletromygram are investigated. These objective evaluation methods are compared with the subjective evaluation. As a result, the body pressure distribution, seat physical characteristics and electromyogram are recommended as the objective technique for the seating comfort evaluation.

  • PDF

욕창 방지를 위한 체압 모니터링 시스템 개발 (Development of The Physical Pressure Monitoring System to Prevent Pressure Ulcers)

  • 이아라;장경배
    • 대한임베디드공학회논문지
    • /
    • 제6권4호
    • /
    • pp.209-214
    • /
    • 2011
  • This study suggests a Healthcare System for elderly and disabled who have mobility impairment and use a wheelchair for long time. Seating long time in a wheelchair without reducing pressure causes high risk of developing pressure sores. Pressure sores come with great deal of pain and often lead to develop complication. Not only it takes time and effort to treat pressure sores but also increases medical expenses. Therefore, we will develop a device to help to prevent pressure sores by measuring pressure distribution while seating in a wheelchair and wirelessly send information to user device to check pressure distribution in real time. The equipment to measure body pressure is composed of FSR sitting mat which is a sensor measuring part and an user terminal which is a monitoring part. The designed mat is matrix formed FSR sensor to measure pressure. The sensor send measured data to the controller which is connected to the end of the mat, and then the collected data are sent to an user terminal through a bluetooth. Developing a pressure monitoring system will help to prevent those who have mobility impairment to manage pressure sores and furthermore relieve their burden of medical expenses.

차량용 시트의 설계품질 향상을 위한 안전공학 및 인간공학에 관한 연구 (A study on the safety and human engineering for the design quality improvement of vehicle seats)

  • 이장무;염영하;신승훈
    • 오토저널
    • /
    • 제8권3호
    • /
    • pp.55-67
    • /
    • 1986
  • The safety and comfort of car seats wee studied by utilization of engineering analysis/ experiment and human engineering data. As important factors of the static seating comfort, static spring constant, body pressure distribution, driving posture were discussed. In connection with the dynamic seating comfort, vibrational characteristics of domestic car seats(natural frequencies, damping, frequency spectrum, transmission ratio)were measured and discussed. Finally, the safety of the seat was analyzed and evaluated through calculation and experiments.

  • PDF

동적 체압 분포를 이용한 운전 자세 변화와 요추지지대의 정량적 평가 (Quantitative Evaluation of Driver's Postural Change and Lumbar Support Using Dynamic Body Pressure Distribution)

  • 나석희;임성현;정민근
    • 대한인간공학회지
    • /
    • 제22권3호
    • /
    • pp.57-73
    • /
    • 2003
  • Although body pressure distribution is sensitive to movements and is relatively simple to measure even in small space, there are few researches involving applications to driver's posture and its change. The main objective in this study is the application of body pressure distribution measurements for the prediction of the driver's posture and its change. This requires quantitative analyses of the dynamic body pressure distribution, which is the change of body pressure distribution with time. The experiment involved 16 male subjects who drove for 45 minutes in a seating buck. Measurement time, stature group, and lumbar support prominence were selected as independent variables, with subjective ratings of driver's discomfort, body posture data of hip, torso. knee angle, and body pressure data variables as dependent variables. The body pressure change variables and subjective ratings were found to increase as the measurement time increased and body pressure ratio variables reflected the torso angle. From the results and analysis of the body posture data and subjective rating results, it was predicted that the seats and the design of the lumbar supports used in the experiment was not fit for tall subjects, which could also be confirmed through the body pressure distribution data.

의자의 틸트 기능이 사용자의 생체 신호 및 안락도에 미치는 영향 분석 (Analysis of the Impact of Chair Tilt Function on Users' Biometric Signals and Comfort)

  • 경슬기
    • 대한의용생체공학회:의공학회지
    • /
    • 제45권2호
    • /
    • pp.75-80
    • /
    • 2024
  • This research investigates the influence of chair tilt functionality on biometric signals and user comfort, addressing the ergonomic challenges posed by modern sedentary lifestyles. Through an experimental study involving eight male participants, the impact of chair tilt on electromyography (EMG), heart rate, metabolic rate, pressure distribution, and distance between the lumbar spine and the lumbar support part of the chair was measured across different seating postures. The study utilized chairs with both synchronous and non-synchronous tilt mechanisms to explore how adjustments in chair design affect user comfort and physiological responses during prolonged sitting. Key findings suggest that chair tilt functionality can significantly reduce muscle activity and energy expenditure, enhancing user comfort and potentially mitigating health risks associated with prolonged sedentary behavior. Notably, the study revealed a preference among participants for chairs that aligned the rotational center of the tilt with the hip joint, highlighting the importance of this ergonomic feature in enhancing user comfort. Additionally, the research proposes a novel methodology for assessing seating comfort through the analysis of both biometric and physical signals, providing valuable insights for the development of ergonomic chair designs focused on user health and comfort.

욕창 예방을 위한 체압 측정 장치 및 교정용 의자 개발 (Development of the physical pressure measurement device and orthodontic chair to prevent pressure sores)

  • 강동원;김경명;장경배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 제40회 하계학술대회
    • /
    • pp.1974_1975
    • /
    • 2009
  • The chairbound, handicapped person often requires a cushion to distribute the supportive forces over the largest area possible in order to reduce the risk of the development of a pressure sore. Pressure sores are areas of damaged skin caused by staying in one position for too long and can cause serious infections, some of which are life-threatening. When sitting upright, the greatest proportion of body weight is centerd over the ischial tuberosities. So, it is important that comfortable seating and largest distribution of pressure to prevent pressure sores. Therefore, the objective of this study was to develop the physical pressure measurement device and orthodontic chair to prevent pressure sores.

  • PDF

폴리우레탄 폼 재질의 휠체어 좌석이 착석 압력에 미치는 영향 (The Effect of Change Wheelchair's Seat of Polyurethane Foam Material on Sitting Pressure)

  • 이진현
    • 재활복지공학회논문지
    • /
    • 제8권3호
    • /
    • pp.205-211
    • /
    • 2014
  • 본 연구는 휠체어 좌석의 재질 중 하나로 국내에서 주로 사용되는 폴리우레탄 폼의 경도에 따른 압력 분석을 통하여 압력 분산이 적절하게 이루어지는 재질을 제시하는 것에 목적이 있다. 이러한 연구의 목적을 달성하기 위해 폴리우레탄 폼의 경도 $13kg/cm^2$, $18kg/cm^2$, $25kg/cm^2$, $45kg/cm^2$로 구성된 전방웨지 6cm 시트를 총 4개를 설계 및 제작하였다. 실험에는 비장애인 10명이 참여하였으며, 측정도구로는 XSENSOR를 사용하였고 휠체어 시뮬레이션에 시트를 올려 실험하였다. 각 시트마다 착석압력 측정은 5분간 실시하였으며 획득한 데이터 중 평균압력, 최대압력, 접촉면적 분석을 통해 경도에 따른 영향을 살펴보았다. 이에 본 실험을 통해 얻은 결과는 다음과 같다. 폴리우레탄 재질의 경도에 따라 평균압력, 최대압력 및 접촉면적은 경도 $45kg/cm^2$에서 높게 나타났고, 13, $18kg/cm^2$에서 낮게 나타났다(p< .05). 이러한 결과를 통해 폴리우레탄 재질의 경도는 착석 시 압력변화에 영향이 있음을 알 수 있었으며, 향후 자세유지기구의 시트 재질로 폴리우레탄 폼을 사용한다면 경도 $18kg/cm^2$가 체압을 분산하기에 적절한 재질로 파악되었다.

  • PDF

자동차 시트의 인간공학적 디자인에 따른 착좌 안락감 및 압력분포 평가 (Evaluation of Seat Comfort and Pressure Distribution According to the Ergonomic Design of Automobile Seats)

  • 정하림;최준원;양승완;박준규;김도용;송창현;김종배;김한성
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권2호
    • /
    • pp.157-165
    • /
    • 2023
  • The purpose of this study was to evaluate the importance of developing slim seats with ergonomic design to improve seat comfort and expand the interior space. Two seats were used for the experiment: a sample seat designed based on hip shape and spinal alignment and a normal seat with a flat design without curves. Subjects sat in both the sample seat and a normal seat applied to the vehicle simulator and the experiment was conducted. The next part of the experiment was conducted in two different postures: a driving posture and a relaxed posture. The subjects filled out a comfort questionnaire immediately after sitting and after 30 minutes. The results showed that the comfort in the sample seat was found to be more comfortable than the normal seat. However, no significant difference was noted for the relaxation posture. Pressure distribution was also recorded immediately after sitting and after 30 minutes. In the case of pressure distribution, it was confirmed that the pressure in the sample seat was more evenly distributed in both the driving and relaxed postures than in the normal seat. The results showed that the ergonomically designed sample seat greatly improved seating comfort and pressure distribution compared to the normal seat, which is a general vehicle seat design.