• Title/Summary/Keyword: Seat Vibration

Search Result 221, Processing Time 0.025 seconds

Fuzzy Control of a Seat Suspension System with an MR Damper (MR댐퍼를 이용한 의자 서스펜션 시스템의 퍼지 제어)

  • Jeon, Do-Young;Kong, Kyoung-Chul
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.619-624
    • /
    • 2004
  • This paper applies the fuzzy logic controller to a semiactive seat suspension system in order to obtain the better ride comfort in constraint of specific rattle space. The seat suspension system used for this research is a scissors-type one with the MR (Magnetic Rheological) fluid damper. Since a seat suspension system with a driver can not be exactly modeled, it is effective to control with the fuzzy logic controller. The rule was carefully tuned to effectively reduce the vibration transmitted to a driver. The on-road ride was realized on a hydraulic excitor and the result shows that the fuzzy controller has reduced the vibration of a seat suspension system compared to the continuous skyhook controller.

  • PDF

Fuzzy Control of the Seat Suspension System Considering the Acceleration of a Driver's Head (머리 가속도를 고려한 의자 서스펜션의 퍼지제어)

  • Kong Kyoung-chul;Jeon Doyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.7
    • /
    • pp.572-577
    • /
    • 2005
  • This paper applies the fuzzy logic controller to a semiactive seat suspension system in order to obtain the better ride comfort in constraint of specific rattle space. The seat suspension system used for this research is a scissors-type one with the MR (Magneto Rheological) fluid damper. Since a seat suspension system with a driver can not be exactly modeled, it is effective to control with the fuzzy logic controller. The rule was carefully tuned to effectively reduce the vibration transmitted to a driver. The on-road ride was realized on a hydraulic excitor and the result shows that the fuzzy controller has reduced the vibration of a seat suspension system compared to the continuous skyhook controller.

Experimental study on vibration transfer characteristics of automotive seats (자동차 의자류의 진동 전달특성에 대한 실험적 연구)

  • 정완섭;우춘규;박세진;김수현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.365-370
    • /
    • 1996
  • This paper introduces experimental results of whole-body vibration exposed through the contact area between automotive seat and human body. Such vibration experiment was carried out for five automotive seats in use and four Korean individuals. Interestingly, the quantitative assessment of the ride values of the tested seats do not only enable us to judge the footnotes the Korean technology in automotive seat has left so far, but also lead to the systematic way of improving their ride quality, in addition in Korean automotive seats raised in this paper.

  • PDF

RESEARCH ON THE RELATIONSHIP BETWEEN RIDING COMFORT AND CAR SEAT MATERIALS

  • Kubo, Mitsunori;Terauchi, Fumio;Aoki, Hiroyuki;Suzuki, Tsutomu;Isobe, Masahiro;Okubo, Kazuhiko
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.312-317
    • /
    • 2000
  • The relationship between riding comfort and the properties of flexible polyurethane foam used in car seats was quantitatively illustrated through vibration experiments with humans sitting in car seats, which were vertically shaken by vibrator. Riding comfort was estimated according to SD (Semantic Differential)-method using questionnaire, and was analyzed with a factor analysis which demonstrated the principal factors of riding comfort. At the same time, riding comfort was related to the properties of the flexible polyurethane foam with coefficients of correlation. It was also related to the behaviour of its vibration of humans sitting in the seats. As a result, it was demonstrated that the relationship between riding comfort and the flexible polyurethane foam properties varies according to the frequency of the vibration shaking the human sitting in the seat. and it was demonstrated that the frequency dependence of the relationship is strongly affected by the physical changes of the vibration modes of the human-seat vibration system.

  • PDF

The Stiffness Analysis and Optimization of the Rubber Seat Considering Nonlinear Behavior (비선형거동을 고려한 방진고무의 강성해석 및 최적설계)

  • Lee, Dong-Hoon;Seo, Sang-Ho;Yun, Young-Hoon;Park, Jin-Goo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.244-249
    • /
    • 2002
  • Rubber seat is extensively used to reduce the vibration of machine or structure. Over the years an enormous effort has been put into developing procedures to provide properties of rubber material for design function. However, there are still a lot of difficulties to analyze static characteristics of rubber components with hyper elasticity and nonlinear large deformation. In this paper material property is obtained by strain-stress curve using a tension test. Mooney-Rivlin Coefficients are gotten by fitting strain-stress curve. The visco-elastic characteristics of refrigerator rubber mount is determined by using ANSYS. And to minimize the rubber stiffness, the rubber seat shape optimization is performed.

  • PDF

A study on the magnetic suspension system for commercial vehicle (상용차용 마그네틱 현가기구 개발에 대한 연구)

  • Ju, Hyung-Jun;Kim, Dae-Sung;Lee, Bong-Hyun;Kim, Jung-In;Kim, Chan-Jung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.409-414
    • /
    • 2011
  • The drivers of commercial vehicle easily feel tired because of a long time driving and bad road condition. Therefore it is very important to make the driver seat comfortable. This paper introduces the suspension system of driver's seat using magnetic force. The combination of linear spring and magnetic force can make nonlinear spring which has optimal stiffness for minimal vibration transmissibility. The vibrations of driver's seat floor are measured in various road condition. And the numerical simulations and experiments are performed to define the optimal parameter of magnetic suspension system.

  • PDF

Human Vibration Measurement for Passenger Car and Seat Characteristics Optimization (승용차에서의 인체 진동 측정 및 시트 특성 최적설계)

  • Cho, Young-Gun;Yoon, Yong-San
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1155-1163
    • /
    • 1999
  • This study deals with the vibration ride quality for passenger car when running on straight highway at the speed of 70km/h. Ten accelerations were measured at four positions, three axes each at the feet, hip, and head, and one axis at the back. Five seats that have different static sponge stiffness were used, and two subjects were participated. These accelerations were analyzed to produce the ride values such as component ride value and overall ride value. It was hard to see the difference of ride value by the change of sponge stiffness. However we could rank the ride quality by the total vibration exposed to passengers. From the transfer function between the hip and the foot, the fundamental mode was observed to be around 5.8Hz. Also the transfer function between the head and hip was studied. The optimal damping ratio of the seat was calculated according to the seat natural frequency with human weighting filter which makes the optimal damping ratio different from that without weighting filter.

Tilting Effect of Automotive Seat System on Squeak Noise (자동차 시트 틸팅 각도에 따른 기어박스 마찰소음 영향도)

  • Kang, Jae-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.6
    • /
    • pp.577-582
    • /
    • 2010
  • The squeak propensity in the gear box of an automotive seat system is investigated analytically. The mating parts in the gear box are the lead screw and the nut, where the friction stresses are exerted on the thread of the screw. The lead screw is modeled as a circular beam allowing the bending and torsional vibrations. In the system, the lead screw converts rotating to translating motion so that it moves the automotive seat slightly tilted on the floor. The tilting angle is considered one major parameter in this study. Therefore, the equations of motion associated with the non-conservative friction force are derived with the inclusion of the tilting angle. It is found that the squeak noise corresponds to the several bending modes of the lead screw and its propensity is increased by the tilting angle of the seat.

A Study on The Vibration Reduction of a Driver Seat Controlling an MR Fluid Damper (자기유변유체 댐퍼를 이용한 운전석의 진동감쇠에 대한 연구)

  • 안병일;전도영
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.10
    • /
    • pp.861-866
    • /
    • 2002
  • A seat suspension system with a controlled MR(Magneto Rheological) fluid damper is introduced to improve the ride quality and prevent the health risk of a driver compared to fixed seats. The system is located between a seat cushion and the base, and is composed of a spring, MR fluid damper and controller. The MR fluid damper designed in valve mode is capable of producing a wide range of damping force according to applied currents. In experiments, a person was sitting on the controlled seat excited by a hydraulic system The skyhook control, continuous skyhook control and relative displacement control were applied and the continuous skyhook control improved the vibration suppression by 36.6%.

Durability Analysis of Automotive Seat Frame by Shape (자동차 시트 프레임의 형상별 내구성 해석에 관한 연구)

  • Choi, Kyekwang;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.14-21
    • /
    • 2020
  • The automotive seat appropriately absorbs the vibrations or shocks transmitted through a vehicle when it is in operation so as to provide a comfortable ride for passengers. In this study, the structural strength and durability of each model were investigated using structural analysis. The natural and critical frequencies at the seat were analyzed through vibration analysis. Through the results of this study on automotive seat frame models, the durability against the load and vibration is shown to be dependent on the configuration of the model.