• Title/Summary/Keyword: Seat Balance

Search Result 15, Processing Time 0.027 seconds

Effects of Training on Sit to Stand on Various Seat Heights on the Balance in Stroke Patients (다양한 좌석 높이에서 일어서기 훈련이 뇌졸중 환자의 균형에 미치는 영향)

  • Kim, Hyun-Sung;Seo, Byoung-Do
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.253-260
    • /
    • 2020
  • This study aimed to compare the effects of sit-to-stand training, or training to stand up from sitting positions at various seat heights, on the balance recovery among stroke patients. This study included 20 stroke patients who were randomly divided into two groups. Each group was trained for six weeks, three times a week from March to June 2019. Static balance and dynamic balance were measured, and the variations were analyzed using the paired t-test and the independent t-test. There were significant changes observed in both static and dynamic balance (p<.05) before and after training. However, no significant changes were seen in the static balance in the standing posture with eyes closed (p>.05). This study confirmed that there was a significant effect of training on the balance of stroke patients, especially when progressively lower seat heights were used during the training. This suggests new directions for treatment during rehabilitation for balance recovery of stroke patients. Further studies will need to apply this training to a larger number of subjects, and use various training methods such as randomization of seat height to enable the generalization of the results of this study and application in clinical practice.

Development of Ergonomic Balance Seat(e-BASE) Chair

  • Park, Jae Hee;Kim, Seung Hee;Kim, Min Uk;Jung, Hanbum;Shim, Young Soo;Ryu, Taehee
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.145-152
    • /
    • 2013
  • Objective: The aim of this study is to develop an ergonomic office chair that has an alarm function for the unbalanced sitting postures. Background: Contrary to expectation, it is reported that office workers sit on their chairs much more in unbalanced postures during daily work. Even though an office worker uses an ergonomically good-designed chair and begins their work in a good sitting posture, his/her posture is likely to shift to the unbalanced bad posture. Therefore, a posture alarm system would be very helpful in keeping office workers' good postures. Method: We developed a prototype chair with four load cells under a seat pan and one load cell beneath a backrest. Through some experiments, we set the criteria for unbalanced bad postures then implemented the criteria into the alarm system of the prototype chair. The chair called e-BASE chair could detect unbalance postures and show alarms for chair users. We also enhanced back support by developing a step-wised folding backrest. Results: The e-BASE chair showed better performance in interface pressure distributions and balanced posture ratio in VDT work. Conclusion: The ergonomic chair with posture alarm function(e-BASE chair) was developed. It showed better performance in seat pressure distribution and in keeping good posture during office work. Application: The posture alarm system and folding backrest can be applied to the new models of office chair.

The Effect of Seat Incline Angle in Hemiplegic Patients' Standing up Training

  • Sim, Woo Sang;Jung, Kwang Tae;Won, Byeong Hee
    • Journal of the Ergonomics Society of Korea
    • /
    • v.35 no.6
    • /
    • pp.493-501
    • /
    • 2016
  • Objective: This study analyzes the effect of angle conditions of rehabilitation equipment used for supporting hemiplegic patients on their rehabilitation training for standing action. The study was performed by adjusting the rear angle of seat inclination through a motion analysis. Background: Owing to a loss of muscle rigidity and degradation of muscle control ability, hemiplegic stroke patients suffer from asymmetrical posture, abnormal body balance, and degraded balance abilities due to poor weight-shifting capacity. The ability to shift and maintain one's weight is extremely essential for mobility, which plays an important role in our daily life. Thus, to improve patients' ability to maintain weight evenly and move normally, they need to undergo orthostatic and ambulatory training. Method: Using a motion analysis system, knee movements on both hemiplegic side and non-hemiplegic side were measured and analyzed in five angles ($0^{\circ}$, $10^{\circ}$, $30^{\circ}$, $50^{\circ}$, $70^{\circ}$) while supported by the sit-to-stand rehabilitation equipment. Results: The knee movements on both sides increased as the angle increased in angle support interval to support a hemiplegic patient's standing up position. In standing up interval, a hemiplegic patient's knee movement deviations on both sides decreased, and the movement differences between hemiplegic and non-hemiplegic legs also decreased as the angle increased. Conclusion: The results of this study showed that the rehabilitation effectiveness increases as the angle increases, leading to a balanced standing posture through the decrease of movement difference between hemiplegic and non-hemiplegic sides and an improved standing up ability through the increase of knee movement on both sides. However, angles higher than $50^{\circ}$ didn't provide a significant effect. Therefore, a support angle under $50^{\circ}$ was proposed in this study. Application: The results of this study are expected to be applicable to the design of sit-to-stand support equipment to improve the effectiveness of the rehabilitation process of hemiplegic patients.

Study on the Design and Analysis of a 4-DOF Robot for Trunk Rehabilitation (체간 재활을 위한 4-DOF 로봇의 설계 및 분석에 관한 연구)

  • Eizad, Amre;Pyo, Sanghun;Lee, Geonhyup;Lyu, Sung-Ki;Yoon, Jungwon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.7
    • /
    • pp.41-51
    • /
    • 2020
  • This paper presents the development of a robotic system for rehabilitation of the trunk's ability to maintain postural control under different balance conditions. The system, developed with extensive input from rehabilitation and biomedical engineering experts, consists of a seat mounted on a robotic mechanism capable of moving it with four degrees of freedom (3 rotational and 1 translational). The seat surface has built in instrumentation to gauge the movements of the user's center of pressure (COP) and it can be moved either to track the movements of the COP or according to operator given commands. The system allows two types of leg support. A ground mounted footrest allows participation of legs in postural control while a seat connected footrest constrains the leg movement and limits their involvement in postural control. The design evolution over several prototypes is presented and computer aided structural analysis is used to determine the feasibility of the designed components. The system is pilot tested by a stroke patient and is determined to have potential for use as a trunk rehabilitation tool. Future works involve more detailed studies to evaluate the effects of using this system and to determine its efficacy as a rehabilitation tool.

Effects of sit-to-stand imagery group training on balance performance in individuals with chronic hemiparetic stroke: a randomized control trial

  • Lee, Jeongwon;Hwang, Sujin;Ahn, Sinae
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.2
    • /
    • pp.63-69
    • /
    • 2016
  • Objective: To evaluate the effects of sit-to-stand (STS) imagery group training (IGT) on STS movement and balance performance for chronic hemiparetic stroke. Design: Randomized controlled trial. Methods: A total of 30 people with chronic hemiparetic stroke (15 for STS-IGT group and 15 for control) were recruited in this study. The STS-IGT group participated in a videotape-based STS-IGT for 30 minutes a day, five days a week for six weeks, while the control group watched a documentary on television for the same period. The STS-IGT focused on a five-stage protocol. Specifically, external imagery was used during the four phases of the STS movement from the seat of the chair to standing up. All of the participants also participated in a regular rehabilitation program. STS movement and balance performance were assessed using three clinical measures. Results: After training, time to perform the 5-repetition STS test significantly increased in the STS-IGT group (change value, $4.0{\pm}2.0$ sec) compared with the control group (change value, $0.9{\pm}0.7$ sec) (p<0.05). There was a greater improvement in Berg balance scale scores in the STS-IGT group (change value, $0.2{\pm}4.1$ points) compared with the control group (change value, $0.3{\pm}0.9$ points) (p<0.05). There was a greater improvement in Timed Up and Go scores in the STS-IGT group (change value, $2.6{\pm}1.5$ sec) compared with the control group (change value, $0.9{\pm}1.0$ sec) (p<0.05). Conclusions: STS-IGT can be considered as a useful option for restoration of STS movement and balance performance for individuals with chronic hemiparetic stroke who are unable to fully participate in physical activities.

A Study on Apply of Smart Sensors for Wheelchair Balancing Control (휠체어 균형 조정을 위한 스마트 센서의 적용에 관한 연구)

  • Ma, Linh Van;Cho, Young-bin;Kim, Jinsul
    • Journal of Digital Contents Society
    • /
    • v.19 no.8
    • /
    • pp.1585-1592
    • /
    • 2018
  • Due to un-balancing weight allocation on the wheelchair the existing wheelchair system are faced with the risk of flipping or falling when a wheelchair goes up to a hill. In to order to be safer during riding the wheelchair, in this paper, we proposed a real-time new solution using the integrated Gyro Sensor and Tilt Sensor for controlling the balance. Because the typical property of wheelchair is for the special user who meets the difficulty in moving on foot the maintain the balance of wheel-chair systems have become important and helpful. In our method, we calculate the seat angle using information from Tilt Sensor. However, due to the law of inertia when a wheelchair is moving there is a deviation in the output value of Tilt Sensor. Therefore, we have to optimize the value of the angle by utilizing the acceleration that is the output of the Gyro Sensor. We took the advantages by using the combination of Gyro and Tilt sensors. Moreover, we also solved the consumption issue of the whole system. Through various experimentations with usage of ZigBee sensor module, the power consumption for the balancing system is reduced significantly.

A Micro Passive Gas Pressure Regulator using Pressure Balance Mechanism (압력평형메커니즘을 이용한 초소형 수동형 기체 압력조정기)

  • Lee, Ki-Jung;Yang, Sang-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.138-143
    • /
    • 2010
  • This paper presents the analysis, the fabrication and the test results of a micro passive gas pressure regulator to keep the outlet pressure costant even for a widely-varying inlet pressure. This device is to regulate the outlet pressure according to the applied reference pressure based on the pressure balancing mechanism of the structure including a membrane and a valve. This regulator consists of four layers; a bulk-micromachined silicon substrate, a sandblasted glass substrate, a PDMS valve seat layer and a glass valve layer. The device size is $10\times13\times1.7 mm3$. The device was fabricated by micromachining. The characteristic of the device was analyzed and tested. The characteristic of the fabricated pressure regulator is similar to that obtained from the analysis. The pressure regulator of this paper is feasible for portable systems and miniature drug delivery systems.

Experimental Investigation of Thermal Stress Cracks in Mechanical Face Seals (기계평면시일의 열응력 크랙에 관한 실험적 연구)

  • 김청균
    • Tribology and Lubricants
    • /
    • v.12 no.3
    • /
    • pp.79-84
    • /
    • 1996
  • One of the greatest dangers in mechanical face seals is the formation of heat checking and thermal stress cracks on the sliding surfaces. These thermal distortions due to non-uniform heating lead to increase the leakage of the sealed fluids and wear, and with balance of the seal can cause the seal faces to part. In this study heat checking and thermal stress cracks are investigated experimentally. These thermal distortions are explained using the thermal models of the conatct geometries between the seal ring and the seal seat. To overcome these thermal problems, the thermohydrodynamic seal is presented. The newly developed mechanical seal may substantially reduce the friction torque, frictional heating which causes heat checking and thermal stress cracks, and wear.

The Study on the Influence Analysis of Shimmy&Shake due to Tire Design Parameters (타이어 설계인자별 Shimmy&Shake 영향도 분석에 관한 연구)

  • Bae, Chul-Yong;Kwon, Seong-Jin;Kim, Chan-Jung;Lee, Bong-Hyun;Koo, Byoung-Kook;Rho, Guck-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.415-420
    • /
    • 2007
  • The objective of this study analyzes the influence of shimmy & shake phenomena due to tire design parameters which are RFV(radial force variation), DB(dynamic balance), RRO(radial run out) and air pressure. These parameters are inspection items for Q.C. after tires are manufactured. In order to analyze these parameters on this study, vehicle driving tests were achieved. The test modes are two type which are constant speed and coast-down driving. On this tests the dynamic characteristics of shimmy & shake are measured by the 3-axises accelerometers at the various positions that are knuckle(left & right), rack pinion, seat and steering wheel. In according to analyzed results, the longitudinal vibration of knuckle parts affects the lateral vibration of rack pinion and this vibration affects the lateral vibration of steering wheel that is the shimmy phenomena. Also the over and under DB by comparison with normal DB and the increment of RRO affect the occurrence of shimmy & shake phenomena.

  • PDF

Implementation of the Posture Stability Monitoring System using Balance Ability Method (균형능력 측정 기법을 이용한 자세안정도 모니터링 시스템 구현)

  • Cha, Sang-Hoon;Choi, Su-Bin;Park, Eun-Ji;Park, Jun-mo;Jeong, Do-Un
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.537-538
    • /
    • 2016
  • Recently, modern people a lot of frequency of work and seat life by academic is increased, addictive spine for the wrong attitude and the wrong habits are many pelvic disease occurrence. Therefore, in order to induce continuous correct posture to prevent this, the system that can be induced to determine the posture information based on the seating information is requested. In this paper, when the development and inappropriate attitude of the device that is capable of tracking measurement in order to evaluate the attitude stability is detected, let your users know, to correct their attitude through the real-time monitoring It was implemented of categorize to help application.

  • PDF