Browse > Article
http://dx.doi.org/10.14775/ksmpe.2020.19.07.041

Study on the Design and Analysis of a 4-DOF Robot for Trunk Rehabilitation  

Eizad, Amre (School of Mechanical & Aerospace Engineering, Gyeongsang National University, ReCAPT)
Pyo, Sanghun (School of Integrated Technology, Gwangju Institute of Science and Technology)
Lee, Geonhyup (School of Integrated Technology, Gwangju Institute of Science and Technology)
Lyu, Sung-Ki (School of Mechanical & Aerospace Engineering, Gyeongsang National University, ReCAPT)
Yoon, Jungwon (School of Integrated Technology, Gwangju Institute of Science and Technology)
Publication Information
Journal of the Korean Society of Manufacturing Process Engineers / v.19, no.7, 2020 , pp. 41-51 More about this Journal
Abstract
This paper presents the development of a robotic system for rehabilitation of the trunk's ability to maintain postural control under different balance conditions. The system, developed with extensive input from rehabilitation and biomedical engineering experts, consists of a seat mounted on a robotic mechanism capable of moving it with four degrees of freedom (3 rotational and 1 translational). The seat surface has built in instrumentation to gauge the movements of the user's center of pressure (COP) and it can be moved either to track the movements of the COP or according to operator given commands. The system allows two types of leg support. A ground mounted footrest allows participation of legs in postural control while a seat connected footrest constrains the leg movement and limits their involvement in postural control. The design evolution over several prototypes is presented and computer aided structural analysis is used to determine the feasibility of the designed components. The system is pilot tested by a stroke patient and is determined to have potential for use as a trunk rehabilitation tool. Future works involve more detailed studies to evaluate the effects of using this system and to determine its efficacy as a rehabilitation tool.
Keywords
Trunk Rehabilitation; Core Stability; Robotics; Center of Pressure(COP); Stroke Patient; Sitting Balanc;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Akuthota, V., Ferreiro, A., Moore, T. and Fredericson, M., "Core Stability Exercise Principles," Current Sports Medicine Reports, Vol. 7, No. 1, pp. 39-44, 2008.   DOI
2 Fredericson, M. and Moore, T., "Muscular Balance, Core Stability, and Injury Prevention for Middleand Long-Distance Runners," Physical Medicine and Rehabilitation Clinics of North America, Vol. 16, No. 3, pp. 669-689, 2005.   DOI
3 Willson, J. D., Dougherty, C. P., Ireland, M. L. and Davis, I. M., "Core Stability and Its Relationship to Lower Extremity Function and Injury," Journal of the American Academy of Orthopaedic Surgeons, Vol. 13, No. 5, pp. 316-325, 2005.   DOI
4 Hochstenbach, J., Donders, R., Mulder, T., Limbeek, J. V. and Schoonderwaldt, H., "Long-term outcome after stroke," International Journal of Rehabilitation Research, Vol. 19, No. 3, pp. 189-200, 1996.   DOI
5 Afzal, M. R., Pyo, S., Oh, M.-K., Park, Y. S. and Yoon, J., "Evaluating the effects of delivering integrated kinesthetic and tactile cues to individuals with unilateral hemiparetic stroke during overground walking," Journal of NeuroEngineering and Rehabilitation, Vol. 15, No. 1, article number: 33, 2018.
6 Eizad, A., Afzal, M. R., Lee, H., Yoon, J. and Lyu, S., "A Wearable Reaction Wheel based Kinesthetic Biofeedback Device for Delivery of Balance Cues," 19th International Conference on Control, Automation and Systems (ICCAS), Jeju, Korea (South), pp. 173-178, 2019.
7 Fong, K. N., Chan, C. C. and Au, D. K., "Relationship of motor and cognitive abilities to functional performance in stroke rehabilitation," Brain Injury, Vol. 15, No. 5, pp. 443-453, 2001.   DOI
8 Eizad, A., Afzal, M. R., Lee, H., Lyu, S. and Yoon, J., "Development of a Wearable Haptic Feedback System for Limb Movement Symmetry Training," International Symposium on Wearable Robotics, Springer, Cham., pp. 455-459, 2018.
9 Keenan, M. A., Perry, J. and Jordan, C., "Factors Affecting Balance and Ambulation Following Stroke," Clinical Orthopaedics and Related Research, pp. 165-171, 1984.
10 Afzal, M. R., Jan, Y., Hassan, S. and Yoon, J., "Analysis of Active Haptic Feedback Effects on Standing Stability," Intelligent Robotics and Applications, Springer Berlin Heidelberg, pp. 154-164, 2013.
11 Afzal, M. R., Lee, H., Eizad, A., Lee, C. H., Oh, M.-K. and Yoon, J. "Effects of Vibrotactile Biofeedback Coding Schemes on Gait Symmetry Training of Individuals With Stroke," IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 27, No. 8, pp. 1617-1625, 2019.   DOI
12 Afzal, M. R., Eizad, A., Palo Pena, C. E. and Yoon, J., "Evaluating the Effects of Kinesthetic Biofeedback Delivered Using Reaction Wheels on Standing Balance," Journal of Healthcare Engineering, Vol. 2018, article ID: 7892020, 2018.
13 Van Criekinge, T., Truijen, S., Schröder, J., Maebe, Z., Blanckaert, K., van der Waal, C., Vink, M. and Saeys, W., "The effectiveness of trunk training on trunk control, sitting and standing balance and mobility post-stroke: a systematic review and meta-analysis," Clinical Rehabilitation, Vol. 33, No. 6, pp. 992-1002, 2019.   DOI
14 Song, J. M. and Kim, S. M., "The effect of trunk stability exercise on balance and gait in stroke patients," Journal of the Korean Society of Physical Medicine, Vol. 5, No. 3, pp. 413-420, 2010.
15 Chung, E.-J., Kim, J.-H. and Lee, B.-H., "The Effects of Core Stabilization Exercise on Dynamic Balance and Gait Function in Stroke Patients," Journal of Physical Therapy Science, Vol. 25, No. 7, pp. 803-806, 2013.   DOI
16 Lee, S. W., Shin, D. C., Song, C. H., "The effects of visual feedback training on sitting balance ability and visual perception of patients with chronic stroke," Journal of physical therapy science, Vol. 25, No. 5, pp. 635-639, 2013.   DOI
17 Haruyama, K., Kawakami, M., and Otsuka, T., "Effect of Core Stability Training on Trunk Function, Standing Balance, and Mobility in Stroke Patients," Neurorehabilitation and Neural Repair, Vol. 31, No. 3, pp. 240-249, 2016.   DOI
18 DeLisa, J. A., Gans, B. M., Walsh, N. E., editors. "Physical medicine and rehabilitation: principles and practice." Lippincott Williams & Wilkins, 2005.
19 O'Sullivan, S. B., Schmitz, T. J., "Improving functional outcomes in physical rehabilitation." FA Davis, 2016.
20 Gassert, R., Dietz, V., "Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective," Journal of neuroengineering and rehabilitation, Vol. 15, No. 1, p. 46, 2018.   DOI
21 Goodworth, A. D., Wu, Y. H., Felmlee, D., Dunklebarger, E., Saavedra, S., "A trunk support system to identify posture control mechanisms in populations lacking independent sitting," IEEE transactions on neural systems and rehabilitation engineering, Vol. 25, No. 1, pp. 22-30, 2016.   DOI
22 Saglia, J. A., De Luca, A., Squeri, V., Ciaccia, L., Sanfilippo, C., Ungaro, S., De Michieli, L., "Design and development of a novel core, balance and lower limb rehabilitation robot: hunova(R)," 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), pp. 417-422, 2019.
23 https://sizekorea.kr/ (accessed 04, Jun, 2018).
24 Goodworth, A. D., Tetreault, K., Lanman, J., Klidonas, T., Kim, S., Saavedra, S., "Sensorimotor control of the trunk in sitting sway referencing," Journal of neurophysiology, Vol. 120, No. 1, pp. 37-52, 2018.   DOI
25 Eizad, A., Pyo, S., Lee, H., Afzal, M. R., Yoon, J. and Lyu, S., "A 4 DOF Robot for Post-Stroke Trunk Rehabilitation," 19th International Conference on Control, Automation and Systems (ICCAS), Jeju, Korea (South), pp. 514-519, 2019.