• 제목/요약/키워드: Seasonal forecast system

검색결과 71건 처리시간 0.026초

WRF 모형의 적운 모수화 방안이 CORDEX 동아시아 2단계 지역의 기후 모의에 미치는 영향 (Impact of Cumulus Parameterization Schemes on the Regional Climate Simulation for the Domain of CORDEX-East Asia Phase 2 Using WRF Model)

  • 최연우;안중배
    • 대기
    • /
    • 제27권1호
    • /
    • pp.105-118
    • /
    • 2017
  • This study assesses the performance of the Weather Research and Forecasting (WRF) model in reproducing regional climate over CORDEX-East Asia Phase 2 domain with different cumulus parameterization schemes [Kain-Fritch (KF), Betts-Miller-Janjic (BM), and Grell-Devenyi-Ensemble (GD)]. The model is integrated for 27 months from January 1979 to March 1981 and the initial and boundary conditions are derived from European Centre for Medium-Range Weather Forecast Interim Reanalysis (ERA-Interim). The WRF model reasonably reproduces the temperature and precipitation characteristics over East Asia, but the regional scale responses are very sensitive to cumulus parameterization schemes. In terms of mean bias, WRF model with BM scheme shows the best performance in terms of summer/winter mean precipitation as well as summer mean temperature throughout the North East Asia. In contrast, the seasonal mean precipitation is generally overestimated (underestimated) by KF (GD) scheme. In addition, the seasonal variation of the temperature and precipitation is well simulated by WRF model, but with an overestimation in summer precipitation derived from KF experiment and with an underestimation in wet season precipitation from BM and GD schemes. Also, the frequency distribution of daily precipitation derived from KF and BM experiments (GD experiment) is well reproduced, except for the overestimation (underestimation) in the intensity range above (less) then $2.5mm\;d^{-1}$. In the case of the amount of daily precipitation, all experiments tend to underestimate (overestimate) the amount of daily precipitation in the low-intensity range < $4mm\;d^{-1}$ (high-intensity range > $12mm\;d^{-1}$). This type of error is largest in the KF experiment.

기상청 기후예측시스템(GloSea5)의 여름철 동아시아 몬순 지수 예측 성능 평가 (Prediction Skill for East Asian Summer Monsoon Indices in a KMA Global Seasonal Forecasting System (GloSea5))

  • 이소정;현유경;이상민;황승언;이조한;부경온
    • 대기
    • /
    • 제30권3호
    • /
    • pp.293-309
    • /
    • 2020
  • There are lots of indices that define the intensity of East Asian summer monsoon (EASM) in climate systems. This paper assesses the prediction skill for EASM indices in a Global Seasonal Forecasting System (GloSea5) that is currently operating at KMA. Total 5 different types of EASM indices (WNPMI, EAMI, WYI, GUOI, and SAHI) are selected to investigate how well GloSea5 reproduces them using hindcasts with 12 ensemble members with 1~3 lead months. Each index from GloSea5 is compared to that from ERA-Interim. Hindcast results for the period 1991~2010 show the highest prediction skill for WNPMI which is defined as the difference between the zonal winds at 850 hPa over East China Sea and South China Sea. WYI, defined as the difference between the zonal winds of upper and lower level over the Indian Ocean far from East Asia, is comparatively well captured by GloSea5. Though the prediction skill for EAMI which is defined by using meridional winds over areas of East Asia and Korea directly affected by EASM is comparatively low, it seems that EAMI is useful for predicting the variability of precipitation by EASM over East Asia. The regressed atmospheric fields with EASM index and the correlation with precipitation also show that GloSea5 best predicts the synoptic environment of East Asia for WNPMI among 5 EASM indices. Note that the result in this study is limited to interpret only for GloSea5 since the prediction skill for EASM index depends greatly on climate forecast model systems.

기후 및 계절정보를 이용한 딥러닝 기반의 장기간 태양광 발전량 예측 기법 (Deep Learning Based Prediction Method of Long-term Photovoltaic Power Generation Using Meteorological and Seasonal Information)

  • 이동훈;김관호
    • 한국전자거래학회지
    • /
    • 제24권1호
    • /
    • pp.1-16
    • /
    • 2019
  • 최근 온실가스의 증가로 인한 기후변화 대응의 필요성과 전력수요의 증가로 인해 태양광발전량(PV) 예측의 중요성은 급격히 증가하고 있다. 특히, 태양광 발전량을 예측하는 것은 합리적인 전력 가격결정과 시스템 안정성 및 전력 생산 균형과 같은 문제를 효과적으로 해결하기 위해 전력생산 계획을 합리적으로 계획하는데 도움이 될 수 있다. 그러나 일사량, 운량, 온도 등과 같은 기후정보 및 계절 변화로 인한 태양광 발전량이 무작위적으로 변화하기 때문에 정확한 태양광 발전량을 예측하는 것은 도전적인 일이다. 따라서 본 논문에서는 딥러닝 모델을 통해 기후 및 계절정보를 이용하여 학습함으로써 장기간 태양광 발전량 예측 성능을 향상시킬 수 있는 기법을 제안한다. 본 연구에서는 대표적인 시계열 방법 중 하나인 계절형 ARIMA 모델과 하나의 은닉층으로 구성되어 있는 ANN 기반의 모델, 하나 이상의 은닉층으로 구성되어 있는 DNN 기반의 모델과의 비교를 통해 본 연구에서 제시한 모델의 성능을 평가한다. 실데이터를 통한 실험 결과, 딥러닝 기반의 태양광 발전량 예측 기법이 가장 우수한 성능을 보였으며, 이는 본 연구에서 목표로 한 태양광 발전량 예측 성능 향상에 긍정적인 영향을 나타내었음을 보여준다.

경험적 분위사상법을 이용한 지역기후모형 기반 미국 강수 및 가뭄의 계절 예측 성능 개선 (Improvement in Seasonal Prediction of Precipitation and Drought over the United States Based on Regional Climate Model Using Empirical Quantile Mapping)

  • 송찬영;김소희;안중배
    • 대기
    • /
    • 제31권5호
    • /
    • pp.637-656
    • /
    • 2021
  • The United States has been known as the world's major producer of crops such as wheat, corn, and soybeans. Therefore, using meteorological long-term forecast data to project reliable crop yields in the United States is important for planning domestic food policies. The current study is part of an effort to improve the seasonal predictability of regional-scale precipitation across the United States for estimating crop production in the country. For the purpose, a dynamic downscaling method using Weather Research and Forecasting (WRF) model is utilized. The WRF simulation covers the crop-growing period (March to October) during 2000-2020. The initial and lateral boundary conditions of WRF are derived from the Pusan National University Coupled General Circulation Model (PNU CGCM), a participant model of Asia-Pacific Economic Cooperation Climate Center (APCC) Long-Term Multi-Model Ensemble Prediction System. For bias correction of downscaled daily precipitation, empirical quantile mapping (EQM) is applied. The downscaled data set without and with correction are called WRF_UC and WRF_C, respectively. In terms of mean precipitation, the EQM effectively reduces the wet biases over most of the United States and improves the spatial correlation coefficient with observation. The daily precipitation of WRF_C shows the better performance in terms of frequency and extreme precipitation intensity compared to WRF_UC. In addition, WRF_C shows a more reasonable performance in predicting drought frequency according to intensity than WRF_UC.

한반도·동아시아 지역의 실시간 가뭄 감시 및 전망 시스템 개발 (Development of Real-Time Drought Monitoring and Prediction System on Korea & East Asia Region)

  • 배덕효;손경환;안중배;홍자영;김광섭;정준석;정의석;김종군
    • 대기
    • /
    • 제22권2호
    • /
    • pp.267-277
    • /
    • 2012
  • The objectives of this study are to develop a real-time drought monitoring and prediction system on the East Asia domain and to evaluate the performance of the system by using past historical drought records. The system is mainly composed of two parts: drought monitoring for providing current drought indices with meteorological and hydrological conditions; drought outlooks for suggesting future drought indices and future hydrometeorological conditions. Both parts represent the drought conditions on the East Asia domain (latitude $21.15{\sim}50.15^{\circ}$, longitude $104.40{\sim}149.65^{\circ}$), Korea domain (latitude $30.40{\sim}43.15^{\circ}$, longitude $118.65{\sim}135.65^{\circ}$) and South Korea domain (latitude $30.40{\sim}43.15^{\circ}$, longitude $118.65{\sim}135.65^{\circ}$), respectively. The observed meteorological data from ASOS (Automated Surface Observing System) and AWS (Automatic Weather System) of KMA (Korean Meteorological Administration) and model-driven hydrological data from LSM (Land Surface model) are used for the real-time drought monitoring, while the monthly and seasonal weather forecast information from UM (Unified Model) of KMA are utilized for drought outlooks. For the evaluation of the system, past historical drought records occurred in Korea are surveyed and are compared with the application results of the system. The results demonstrated that the selected drought indices such as KMA drought index, SPI (3), SPI (6), PDSI, SRI and SSI are reasonable, especially, the performance of SRI and SSI provides higher accuracy that the others.

시간축 및 요일축 정보를 이용한 신경회로망 기반의 계통한계가격 예측 (A System Marginal Price Forecasting Method Based on an Artificial Neural Network Using Time and Day Information)

  • 이정규;신중린;박종배
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권3호
    • /
    • pp.144-151
    • /
    • 2005
  • This paper presents a forecasting technique of the short-term marginal price (SMP) using an Artificial Neural Network (ANN). The SW forecasting is a very important element in an electricity market for the optimal biddings of market participants as well as for market stabilization of regulatory bodies. Input data are organized in two different approaches, time-axis and day-axis approaches, and the resulting patterns are used to train the ANN. Performances of the two approaches are compared and the better estimate is selected by a composition rule to forecast the SMP. By combining the two approaches, the proposed composition technique reflects the characteristics of hourly, daily and seasonal variations, as well as the condition of sudden changes in the spot market, and thus improves the accuracy of forecasting. The proposed method is applied to the historical real-world data from the Korea Power Exchange (KPX) to verify the effectiveness of the technique.

지역 파랑 예측시스템과 해양기상 부이의 파랑 특성 비교 연구 (Research on Wind Waves Characteristics by Comparison of Regional Wind Wave Prediction System and Ocean Buoy Data)

  • 유승협;박종숙
    • 한국해양공학회지
    • /
    • 제24권6호
    • /
    • pp.7-15
    • /
    • 2010
  • Analyses of wind wave characteristics near the Korean marginal seas were performed in 2008 and 2009 by comparisons of an operational wind wave forecast model and ocean buoy data. In order to evaluate the model performance, its results were compared with the observed data from an ocean buoy. The model used in this study was very good at predicting the characteristics of wind waves near the Korean Peninsula, with correlation coefficients between the model and observations of over 0.8. The averaged Root Mean Square Error (RMSE) for 48 hrs of forecasting between the modeled and observed waves and storm surges/tide were 0.540 m and 0.609 m in 2008 and 2009, respectively. In the spatial and seasonal analysis of wind waves, long waves were found in July and September at the southern coast of Korea in 2008, while in 2009 long waves were found in the winter season at the eastern coast of Korea. Simulated significant wave heights showed evident variations caused by Typhoons in the summer season. When Typhoons Kalmaegi and Morakot in 2008 and 2009 approached to Korean Peninsula, the accuracy of the model predictions was good compared to the annual mean value.

장기예보자료를 활용한 가뭄전망정보 생산 및 평가 (Generation and assessment of drought outlook information using long-term weather forecast data)

  • 소재민;손경환;배덕효
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.97-97
    • /
    • 2016
  • 가뭄은 홍수와 더불어 매우 심각한 자연재해이며, 그 특성상 광역적이고 장기간 발생함에 따라 구체적인 발생시점, 규모, 범위 등을 규명하기가 어렵다. 다만, 적시에 경보해야 하는 홍수와 달리 진행속도가 느리고 시간적으로 대처할 여유가 있어 진행중 일지라도 초기에 감지한다면 그 피해를 최소화할 수 있다. 미국 등 수문기상 선진국에서는 수문기상 장기예보자료를 활용한 가뭄전망정보 생산 및 제공하고 있으며, 활용성을 검증한바 있다. 국내의 경우 기상청에서는 대기-해양-해빙 모델을 접합한 GloSea5 (Global Seasonal forecasting system version 5) 모델을 도입하였으며, 가뭄예보를 목적으로 장기예보자료 기반의 가뭄전망정보 생산체계를 구축한 바 있다(기상청, 2012; 손경환 등, 2015). 본 연구에서는 장기예보자료 기반의 수문기상 전망정보를 이용하여 2014-15년 가뭄사례에 대한 가뭄감시 및 전망정보를 생산 및 평가하였다. 수문기상전망 정보는 기상청 현업예보 모델인 GloSea5와 지면모델을 이용하여 생산하였으며, 관측자료와 수문전망정보 기반의 가뭄지수를 산정하였다. 매스컴 및 언론 보도 자료부터 2014-15년 가뭄에 대한 행정구역별 피해사례를 수집하였으며, 이를 기반으로 시계열, 지역별 및 통계적(CC, RMSE) 분석을 이용하여 선행시간별 정확도를 평가하였다. 1개월 및 2개월 전망정보의 정확도가 높음을 확인하였으며, 가뭄심도가 심각한 시기의 가뭄상황을 적절히 재현하는 것으로 나타났다.

  • PDF

수요감소 요인 외생변수를 갖는 SARIMAX 모형을 이용한 관광수요 예측 (Forecasting Foreign Visitors using SARIMAX Models with the Exogenous Variable of Demand Decrease)

  • 이근철;최성훈
    • 산업경영시스템학회지
    • /
    • 제43권4호
    • /
    • pp.59-66
    • /
    • 2020
  • In this study, we consider the problem of forecasting the number of inbound foreigners visiting Korea. Forecasting tourism demand is an essential decision to plan related facilities and staffs, thus many studies have been carried out, mainly focusing on the number of inbound or outbound tourists. In order to forecast tourism demand, we use a seasonal ARIMA (SARIMA) model, as well as a SARIMAX model which additionally comprises an exogenous variable affecting the dependent variable, i.e., tourism demand. For constructing the forecasting model, we use a search procedure that can be used to determine the values of the orders of the SARIMA and SARIMAX. For the exogenous variable, we introduce factors that could cause the tourism demand reduction, such as the 9/11 attack, the SARS and MERS epidemic, and the deployment of THAAD. In this study, we propose a procedure, called Measuring Impact on Demand (MID), where the impact of each factor on tourism demand is measured and the value of the exogenous variable corresponding to the factor is determined based on the measurement. To show the performance of the proposed forecasting method, an empirical analysis was conducted where the monthly number of foreign visitors in 2019 were forecasted. It was shown that the proposed method can find more accurate forecasts than other benchmarks in terms of the mean absolute percentage error (MAPE).

한국형수치예보모델 자료동화에서 위성 복사자료 관측오차 진단 및 영향 평가 (Diagnostics of Observation Error of Satellite Radiance Data in Korean Integrated Model (KIM) Data Assimilation System)

  • 김혜영;강전호;권인혁
    • 대기
    • /
    • 제32권4호
    • /
    • pp.263-276
    • /
    • 2022
  • The observation error of satellite radiation data that assimilated into the Korean Integrated Model (KIM) was diagnosed by applying the Hollingsworth and Lönnberg and Desrozier techniques commonly used. The magnitude and correlation of the observation error, and the degree of contribution for the satellite radiance data were calculated. The observation errors of the similar device, such as Advanced Technology Microwave Sounder (ATMS) and Advanced Microwave Sounding Unit-A shows different characteristics. The model resolution accounts for only 1% of the observation error, and seasonal variation is not significant factor, either. The observation error used in the KIM is amplified by 3-8 times compared to the diagnosed value or standard deviation of first-guess departures. The new inflation value was calculated based on the correlation between channels and the ratio of background error and observation error. As a result of performing the model sensitivity evaluation by applying the newly inflated observation error of ATMS, the error of temperature and water vapor analysis field were decreased. And temperature and water vapor forecast field have been significantly improved, so the accuracy of precipitation prediction has also been increased by 1.7% on average in Asia especially.