Acknowledgement
본 논문의 개선을 위해 좋은 의견을 제시해 주신 두 분의 심사위원께 감사드립니다. 이 연구는 농촌진흥청 연구사업(세부과제번호: PJ01475503)의 지원으로 수행되었습니다.
References
- Ahn, J.-B., Y.-W. Choi, and S. Jo, 2018a: Evaluation of reproduced precipitation by WRF in the Region of CORDEX-East Asia phase 2. Atmosphere, 28, 85-97, doi:10.14191/Atmos.2018.28.1.085 (in Korean with English abstract).
- Ahn, J.-B., K.-M. Shim, M.-P. Jung, H.-G. Jeong, Y.-H. Kim, and E.-S. Kim, 2018b: Predictability of temperature over South Korea in PNU CGCM and WRF hind-cast. Atmosphere, 28, 479-490, doi:10.14191/Atmos.2018.28.4.479 (in Korean with English abstract).
- Ahn, J.-B., and Coauthors, 2021: Climatic yield potential of Japonica-type rice in the Korean Peninsula under RCP scenarios using the ensemble of multi-GCM and multi-RCM chains. Int. J. Climatol., 41, E1287-E1302, doi:10.1002/joc.6767.
- Behnke, R., S. Vavrus, A. Allstadt, T. Albright, W. E. Thogmartin, and V. C. Radeloff, 2016: Evaluation of downscaled, gridded climate data for the conterminous United States. Ecol. Appl., 26, 1338-1351, doi: 10.1002/15-1061.
- Bonan, G. B., 1998: The Land Surface Climatology of the NCAR Land Surface Model Coupled to the NCAR Community Climate Model. J. Climate, 11, 1307-1326, doi:10.1175/1520-0442(1998)011<1307:Tlscot>2.0.Co;2.
- Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon. Wea. Rev., 129, 569-585, doi:10.1175/1520-0493(2001)129<0569:Caalsh>2.0.Co;2.
- Chen, J., F. P. Brissette, D. Chaumont, and M. Braun, 2013: Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resour. Res., 49, 4187-4205, doi:10.1002/wrcr.20331.
- Chen, M., W. Shi, P. Xie, V. B. S. Silva, V. E. Kousky, R. Wayne Higgins, and J. E. Janowiak, 2008: Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res. Atmos., 113, D04110, doi:10.1029/2007JD009132.
- Choi, S.-C., J.-K. Kim, and S.-Y. Ock, 2021: The Current Status of Korean Agriculture in the World. Korea Rural Economic Institute, 192 pp [Available online at http://www.krei.re.kr/krei/researchReportView.do?key=67&pageType=010101&biblioId=527754&pageUnit=10&searchCnd=all&searchKrwd=&pageIndex=1] (in Korean).
- Choi, W., and K.-Y. Kim, 2018: Physical mechanism of spring and early summer drought over North America associated with the boreal warming. Sci. Rep., 8, 7533, doi:10.1038/s41598-018-25932-5.
- Choi, Y.-W., and J.-B. Ahn, 2017: Impact of cumulus parameterization schemes on the regional climate simulation for the domain of CORDEX-East Asia phase 2 using WRF model. Atmosphere, 27, 105-118, doi:10.14191/Atmos.2017.27.1.105 (in Korean with English abstract).
- Cocke, S., and T. E. LaRow, 2000: Seasonal predictions using a regional spectral model embedded within a coupled ocean-atmosphere model. Mon. Wea. Rev., 128, 689-708, doi:10.1175/1520-0493(2000)128<0689:Spuars>2.0.Co;2.
- Cocke, S., T. E. LaRow, and D. W. Shin, 2007: Seasonal rainfall predictions over the southeast United States using the Florida State University nested regional spectral model. J. Geophys. Res. Atmos., 112, D04106, doi:10.1029/2006JD007535.
- De Sales, F., and Y. Xue, 2013: Dynamic downscaling of 22-year CFS winter seasonal hindcasts with the UCLAETA regional climate model over the United States. Climate Dyn., 41, 255-275, doi:10.1007/s00382-012-1567-x.
- DelSole, T., and J. Shukla, 2006: Specification of wintertime North American surface temperature. J. Climate, 19, 2691-2716, doi:10.1175/jcli3704.1.
- Devi, U., M. S. Shekhar, and G. P. Singh, 2021: Correction of mesoscale model daily precipitation data over Northwestern Himalaya. Theor. Appl. Climatol., 143, 51-60, doi:10.1007/s00704-020-03409-8.
- Dominguez, F., E. Rivera, D. P. Lettenmaier, and C. L. Castro, 2012: Changes in winter precipitation extremes for the western United States under a warmer climate as simulated by regional climate models. Geophys. Res. Lett., 39, L05803, doi:10.1029/2011GL050762.
- Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077-3107, doi:10.1175/1520-0469(1989)046<3077:Nsocod>2.0.Co;2.
- Fang, G. H., J. Yang, Y. N. Chen, and C. Zammit, 2015: Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China. Hydrol. Earth Syst. Sci., 19, 2547-2559, doi:10.5194/hess-19-2547-2015.
- Fernando, D. N., and Coauthors, 2016: What caused the spring intensification and winter demise of the 2011 drought over Texas?. Clim. Dyn., 47, 3077-3090, doi:10.1007/s00382-016-3014-x.
- Fluixa-Sanmartin, J., D. Pan, L. Fischer, B. Orlowsky, J. Garcia-Hernandez, F. Jordan, C. Haemmig, F. Zhang, and J. Xu, 2018: Searching for the optimal drought index and timescale combination to detect drought: a case study from the lower Jinsha River basin, China. Hydrol. Earth Syst. Sci., 22, 889-910, doi:10.5194/hess-22-889-2018.
- Gudmundsson, L., J. B. Bremnes, J. E. Haugen, and T. Engen-Skaugen, 2012: Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations-a comparison of methods. Hydrol. Earth Syst. Sci., 16, 3383-3390, doi:10.5194/hess-16-3383-2012.
- Gutjahr, O., and G. Heinemann, 2013: Comparing precipitation bias correction methods for high-resolution regional climate simulations using COSMO-CLM. Theor. Appl. Climatol., 114, 511-529, doi:10.1007/s00704-013-0834-z.
- Guttman, N. B., 1999: Accepting the standardized precipitation index: a calculation algorithm. J. Am. Water Resour. Assoc., 35, 311-322, doi:10.1111/j.1752-1688.1999.tb03592.x.
- Ham, S., A.-Y. Lim, S. Kang, H. Jeong, and Y. Jeong, 2019: A newly developed APCC SCoPS and its prediction of East Asia seasonal climate variability. Climate Dyn., 52, 6391-6410, doi:10.1007/s00382-018-4516-5.
- Hayes, M., M. Svoboda, N. Wall, and M. Widhalm, 2011: The lincoln declaration on drought indices: universal meteorological drought index recommended. Bull. Amer. Meteor. Soc., 92, 485-488, doi:10.1175/2010bams3103.1.
- Hoerling, M., and Coauthors, 2013: Anatomy of an extreme event. J. Climate, 26, 2811-2832, doi:10.1175/jcli-d-12-00270.1.
- Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF singlemoment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129-151.
- Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341, doi:10.1175/mwr3199.1.
- Hunke, E. C., and J. K. Dukowicz, 1997: An elastic-viscous-plastic model for sea ice dynamics. J. Phys. Oceanogr., 27, 1849-1867, doi:10.1175/1520-0485(1997)027<1849:Aevpmf>2.0.Co;2.
- Hur, J., and J.-B. Ahn, 2015: Seasonal prediction of regional surface air temperature and first-flowering date over South Korea. Int. J. Climatol., 35, 4791-4801, doi:10.1002/joc.4323.
- Hur, J., and J.-B. Ahn, 2017: Assessment and prediction of the first-flowering dates for the major fruit trees in Korea using a multi-RCM ensemble. Int. J. Climatol., 37, 1603-1618, doi:10.1002/joc.4800.
- Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor. Climatol., 43, 170-181, doi:10.1175/1520-0450(2004)043<0170:Tkcpau>2.0.Co;2.
- Kiehl, J. T., J. J. Hack, G. B. Bonan, B. A. Boville, B. P. Briegleb, D. L. Williamson, and P. J. Rasch, 1996: Description of the NCAR community climate model (CCM3). Tech. Rep. No. NCAR/TN-420+STR, National Center for Atmospheric Research, 152 pp [Available online at https://opensky.ucar.edu/islandora/object/technotes:187].
- Kim, H.-J., and J.-B. Ahn, 2015: Improvement in prediction of the Arctic Oscillation with a realistic ocean initial condition in a CGCM. J. Climate, 28, 8951-8967, doi:10.1175/jcli-d-14-00457.1.
- Kim, M.-S., 2019: World agricultural supply and demand estimates. In D. Huh et al. Eds., World Grain Market vol. 8 no. 6, KREI, 10-26 (in Korean) [Available online at http://www.krei.re.kr/krei/researchReportView.do?key=311&pageType=0304&biblioId=521449&pageUnit=10&searchCnd=all&searchKrwd=&pageIndex=2].
- Kim, Y.-H., E.-S. Kim, M.-J. Choi, K.-M. Shim, and J.-B. Ahn, 2019: Evaluation of long-term seasonal predictability of heatwave over South Korea using PNU CGCM-WRF Chain. Atmosphere, 29, 671-687, doi:10.14191/Atmos.2019.29.5.671 (in Korean with English abstract).
- Kirtman, B. P., and Coauthors, 2014: The North American multimodel ensemble: Phase-1 seasonal-to-interannual prediction; Phase-2 toward developing intraseasonal prediction. Bull. Amer. Meteor. Soc., 95, 585-601, doi:10.1175/bams-d-12-00050.1.
- Kwak, J., S. Kim, J. Jung, V. P. Singh, D. R. Lee, and H. S. Kim, 2016: Assessment of meteorological drought in Korea under climate change. Adv. Meteorol., 2016, 1879024, doi:10.1155/2016/1879024.
- Leng, G., 2021: Maize yield loss risk under droughts in observations and crop models in the United States. Environ. Res. Lett., 16, 024016, doi:10.1088/1748-9326/abd500.
- Li, W., R. Fu, R. I. N. Juarez, and K. Fernandes, 2008: Observed change of the standardized precipitation index, its potential cause and implications to future climate change in the Amazon region. Phil. Trans. R. Soc. B., 363, 1767-1772, doi:10.1098/rstb.2007.0022.
- Li, Y., K. Guan, G. D. Schnitkey, E. DeLucia, and B. Peng, 2019: Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States. Glob. Change Biol., 25, 2325-2337, doi:10.1111/gcb.14628.
- Lim, E.-P., H. H. Hendon, S. Langford, and O. Alves, 2012: Improvements in POAMA2 for the prediction of major climate drivers and south eastern Australian rainfall. CAWCR Tech. Rep. No. 051, Centre for Australian Weather and Climate Research, 23 pp [Available online at https://www.cawcr.gov.au/technical-reports/CTR_051.pdf].
- Linderholm, H. W., 2006: Growing season changes in the last century. Agric. Forest. Meteor., 137, 1-14, doi:10.1016/j.agrformet.2006.03.006.
- Lobell, D. B., M. J. Roberts, W. Schlenker, N. Braun, B. B. Little, R. M. Rejesus, and G. L. Hammer, 2014: Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest. Science, 344, 516-519, doi:10.1126/science.1251423.
- MacLachlan, C., and Coauthors, 2015: Global Seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system. Q. J. R. Meteorol. Soc., 141, 1072-1084, doi:10.1002/qj.2396.
- Manzanas, R., A. Lucero, A. Weisheimer, and J. M. Gutierrez, 2018: Can bias correction and statistical downscaling methods improve the skill of seasonal precipitation forecasts?. Climate Dyn., 50, 1161-1176, doi:10.1007/s00382-017-3668-z.
- Maraun, D., 2013: Bias correction, quantile mapping, and downscaling: Revisiting the inflation issue. J. Climate, 26, 2137-2143, doi:10.1175/jcli-d-12-00821.1.
- McKee, T. B., N. J. Doesken, and J. Kleist, 1993: The relationship of drought frequency and duration to time scales. Proc., The 8th Conference on Applied Climatology, Anaheim, CA, United States, Amer. Meteor. Soc., 179-184.
- McKee, T. B., N. J. Doesken, and J. Kleist, 1995: Drought monitoring with multiple time scales. Proc., The 9th Conference on Applied Climatology, Dallas, TX, United States, Amer. Meteor. Soc., 233-236.
- Michaelsen, J., 1987: Cross-validation in statistical climate forecast models. J. Appl. Meteor. Climatol., 26, 1589-1600, doi:10.1175/1520-0450(1987)026<1589:Cviscf>2.0.Co;2.
- Mishra, V., and K. A. Cherkauer, 2010: Retrospective droughts in the crop growing season: Implications to corn and soybean yield in the Midwestern United States. Agric. For. Meteorol., 150, 1030-1045, doi:10.1016/j.agrformet.2010.04.002.
- Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos., 102, 16663-16682, doi:10.1029/97JD00237.
- Molteni, F., and Coauthors, 2011: The new ECMWF seasonal forecast system (System 4). ECMWF Tech. Memo. No. 656, European Centre for Medium Range Weather Forecasts, 49 pp [Available online at https://www.ecmwf.int/sites/default/files/elibrary/2011/11209-new-ecmwf-seasonal-forecast-system-system-4.pdf].
- M'Po, Y. N., A. E. Lawin, G. T. Oyerinde, B. K. Yao, and A. A. Afouda, 2016: Comparison of daily precipitation bias correction methods based on four regional climate model outputs in Oueme Basin, Benin. Hydrology, 4, 58-71, doi:10.11648/j.hyd.20160406.11.
- Pacanowski, R. C., and S. M. Griffies, 2000: MOM 3.0 Manual. NOAA/GFDL, 682 pp [Available online at https://www.gfdl.noaa.gov/wp-content/uploads/files/model_development/ocean/mom3_manual.pdf].
- Palmer, W. C., 1965: Meteorological drought. Research Paper No. 45, U.S. Department of Commerce Weather Bureau, 58 pp [Available online at https://www.ncdc.noaa.gov/temp-and-precip/drought/docs/palmer.pdf].
- Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor. Climatol., 9, 857-861, doi:10.1175/1520-0450(1970)009<0857:Tmrows>2.0.Co;2.
- Piani, C., J. O. Haerter, and E. Coppola, 2010: Statistical bias correction for daily precipitation in regional climate models over Europe. Theor. Appl. Climatol., 99, 187-192, doi:10.1007/s00704-009-0134-9.
- RDA, 2014: The construction of agrometeorological information and climate modeling in major crop production area. Rural Development Administration, 138 pp [Available online at https://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO201400011432].
- RDA, 2018: Production of dissemination of agro-climate information in major crop production areas. Rural Development Administration, 86 pp [Available online at https://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO201800043070&dbt=TRKO].
- RDA, 2020: Development of environment information and monitoring service system for grain yield in foreign countries. Rural Development Administration, 232 pp [Available online at https://scienceon.kisti.re.kr/srch/selectPORSrchReport.do?cn=TRKO202000030378].
- Saha, S., and Coauthors, 2006: The NCEP Climate Forecast System. J. Climate, 19, 3483-3517, doi:10.1175/jcli3812.1.
- Seo, G.-Y., Y.-W. Choi, and J.-B. Ahn, 2019: Near future projection of extreme temperature over CORDEXEast Asia phase 2 region using the WRF model based on RCP scenarios. Atmosphere, 29, 585-597, doi:10.14191/Atmos.2019.29.5.585 (in Korean with English abstract).
- Shukla, S., and D. P. Lettenmaier, 2013: Multi-RCM ensemble downscaling of NCEP CFS winter season forecasts: Implications for seasonal hydrologic forecast skill. J. Geophys. Res. Atmos., 118, 10770-10790, doi:10.1002/jgrd.50628.
- Shukla, S., M. Safeeq, A. AghaKouchak, K. Guan, and C. Funk, 2015: Temperature impacts on the water year 2014 drought in California. Geophys. Res. Lett., 42, 4384-4393. doi:10.1002/2015GL063666.
- Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the Advanced Research WRF version 3. Tech. Rep. No. NCAR/TN-468+STR, National Center for Atmospheric Research, 88 pp [Available online at https://opensky.ucar.edu/islandora/object/technotes:500].
- Son, K.-H., D.-H. Bae, and H.-S. Cheong, 2015: Construction & evaluation of GloSea5-based hydrological drought outlook system. Atmosphere, 25, 271-281, doi:10.14191/Atmos.2015.25.2.271 (in Korean with English abstract).
- Teutschbein, C., and J. Seibert, 2012: Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods. J. Hydrol., 456, 12-29, doi:10.1016/j.jhydrol.2012.05.052.
- Themessl, M. J., A. Gobiet, and A. Leuprecht, 2011: Empirical-statistical downscaling and error correction of daily precipitation from regional climate models. Int. J. Climatol., 31, 1530-1544, doi:10.1002/joc.2168.
- Themessl, M. J., A. Gobiet, and G. Heinrich, 2012: Empirical-statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Climatic Change, 112, 449-468, doi:10.1007/s10584-011-0224-4.
- Vicente-Serrano, S. M., S. Begueria, and J. I. Lopez-Moreno, 2010: A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Climate, 23, 1696-1718, doi:10.1175/2009jcli2909.1.
- WMO, 2012: Standardized Precipitation Index User Guide. WMO-No. 1090, World Meteorological Organization, 16 pp [Available online at https://library.wmo.int/index.php?lvl=notice_display&id=13682#.YREZUogzaUm].
- Williams, A. P., R. Seager, J. T. Abatzoglou, B. I. Cook, J. E. Smerdon, and E. R. Cook, 2015: Contribution of anthropogenic warming to California drought during 2012~2014. Geophys. Res. Lett., 42, 6819-6828, doi:10.1002/2015GL064924.
- Wood, A. W., L. R. Leung, V. Sridhar, and D. P. Lettenmaier, 2004: Hydrologic implications of dynamical and statistical approaches to downscaling climate model Outputs. Climatic Change, 62, 189-216, doi:10.1023/B:CLIM.0000013685.99609.9e.
- Xie, P., M. Chen, S. Yang, A. Yatagai, T. Hayasaka, Y. Fukushima, and C. Liu, 2007: A gauge-based analysis of daily precipitation over East Asia. J. Hydrometeor., 8, 607-626, doi:10.1175/jhm583.1.
- Yoo, J. Y., H. Song, T.-W. Kim, and J.-H. Ahn, 2013: Evaluation of short-term drought using daily standardized precipitation index and ROC analysis. J. Korean Soc. Civil Engineers, 33, 1851-1860, doi:10.12652/Ksce.2013.33.5.1851 (in Korean with English abstract).
- Yoon, S.-H., and M.-S. Won, 2016: Correlation analysis of forest fire occurrences by change of standardized precipitation index. J. Korean Assoc. Geogr. Infor. Studies, 19, 14-26, doi:10.11108/kagis.2016.19.2.014 (in Korean with English abstract).
- Yuan, X., X.-Z. Liang, and E. F. Wood, 2012: WRF ensemble downscaling seasonal forecasts of China winter precipitation during 1982-2008. Climate Dyn., 39, 2041-2058, doi:10.1007/s00382-011-1241-8.
- Zipper, S. C ., J. Qiu, and C. J. Kucharik, 2016: Drought effects on US maize and soybean production: spatiotemporal patterns and historical changes. Environ. Res. Lett., 11, 094021, doi:10.1088/1748-9326/11/9/094021.