DOI QR코드

DOI QR Code

Diagnostics of Observation Error of Satellite Radiance Data in Korean Integrated Model (KIM) Data Assimilation System

한국형수치예보모델 자료동화에서 위성 복사자료 관측오차 진단 및 영향 평가

  • Kim, Hyeyoung (Korea Institute of Atmospheric Prediction Systems) ;
  • Kang, Jeon-Ho (Korea Institute of Atmospheric Prediction Systems) ;
  • Kwon, In-Hyuk (Korea Institute of Atmospheric Prediction Systems)
  • 김혜영 ((재)차세대수치예보모델개발사업단) ;
  • 강전호 ((재)차세대수치예보모델개발사업단) ;
  • 권인혁 ((재)차세대수치예보모델개발사업단)
  • Received : 2022.06.16
  • Accepted : 2022.10.25
  • Published : 2022.12.31

Abstract

The observation error of satellite radiation data that assimilated into the Korean Integrated Model (KIM) was diagnosed by applying the Hollingsworth and Lönnberg and Desrozier techniques commonly used. The magnitude and correlation of the observation error, and the degree of contribution for the satellite radiance data were calculated. The observation errors of the similar device, such as Advanced Technology Microwave Sounder (ATMS) and Advanced Microwave Sounding Unit-A shows different characteristics. The model resolution accounts for only 1% of the observation error, and seasonal variation is not significant factor, either. The observation error used in the KIM is amplified by 3-8 times compared to the diagnosed value or standard deviation of first-guess departures. The new inflation value was calculated based on the correlation between channels and the ratio of background error and observation error. As a result of performing the model sensitivity evaluation by applying the newly inflated observation error of ATMS, the error of temperature and water vapor analysis field were decreased. And temperature and water vapor forecast field have been significantly improved, so the accuracy of precipitation prediction has also been increased by 1.7% on average in Asia especially.

Keywords

Acknowledgement

본 논문의 개선을 위해 좋은 의견을 제시해 주신 심사위원께 감사를 드립니다. 본 연구는 기상청 출연사업인 (재)차세대수치예보모델개발사업단의 4차원 고품질기상분석을 위한 최신 자료동화기술 개발(KMA2020-02211)의 지원을 받아 수행되었습니다.

References

  1. Andersson, E., 2004: Modelling the temporal evolution of innovation statistics. In: Proceedings of Seminar on Recent Developments in Data Asimilation for Atmosphere and Ocean, 8-12 September 2003. ECMWF.
  2. Bormann, N., A. Collard, and P. Bauer, 2010: Estimates of spatial and inter-channel observation error characteristics for current sounder radiances for NWP, part I: Methods and application to ATOVS data. Q. J. R. Meteorol. Soc., 136, 1036-1050. https://doi.org/10.1002/qj.616
  3. Bormann, N., A. Fouilloux, and W. Bell, 2013: Evaluation and assimilation of ATMS data in the ECMWF system. J. Geophys. Res. Atmos., 118, 12970-12980, doi:10.1002/2013JD020325.
  4. Bormann, N., M. Bonavita, R. Dragani, R. Eresmaa, M. Matricardi, and A. McNally, 2016: Enhancing the impact of IASI observations through an updated ob- servation-error covariance matrix. Q. J. R. Meteorol. Soc., 142, 1767-1780, doi:10.1002/qj.2774.
  5. Bouttier, F., and P. Coutier, 1999: Data Assimilation Concept and Methods. European Centre for Medium-Range Weather Forecasts, 59 pp.
  6. Chapnik, B., G. Desroziers, F. Rabier, and O. Talagrand, 2006: Diagnosis and tuning of observational error in a quasi-operational data assimilation setting. Q. J. R. Meteorol. Soc., 132, 543-565. https://doi.org/10.1256/qj.04.102
  7. Dee, D. P., 2005: Bias and data assimilation. Q. J. R. Meteorol. Soc., 131, 3323-3343. https://doi.org/10.1256/qj.05.137
  8. Dee, D. P., and A. M. da Silva, 1999: Maximum-likelihood estimation of forecast and observation error covariance parameters. Part I, Methodology. Mon. Weather Rev., 127, 1822-1834. https://doi.org/10.1175/1520-0493(1999)127<1822:MLEOFA>2.0.CO;2
  9. Desroziers, G., and S. Ivanov, 2001: Diagnosis and adaptive tuning of information error parameters in a variational assimilation. Q. J. R. Meteorol. Soc., 127, 1433-1452. https://doi.org/10.1002/qj.49712757417
  10. Desroziers, G., L. Berre, B. Chapnik, and P. Poli, 2005: Diagnosis of observation background and analysis- error statistics in observation space. Q. J. R. Meteorol. Soc., 131, 3385-3396. https://doi.org/10.1256/qj.05.108
  11. Eresmaa, R. 2014: Imager-assisted cloud detection for assimilation of infrared atmospheric sounding interferometer radiances. Q. J. R. Meteorol. Soc., 140, 2342-2352, doi:10.1002/qj.2304.
  12. Garand, L., S. Heilliette, and M. Buehner, 2007: Interchannel error correlation associated with AIRS radiance observations: Inference and impact in data assimilation. J. Appl. Meteorol. Climatol., 46, 714-725. https://doi.org/10.1175/JAM2496.1
  13. Haben, S. A., A. S. Lawless, and N. K. Nichols, 2011: Conditioning of incremental variational data assimilation, with application to the Met Office system. Tellus A, Dyn. Meterol. Oceanogr., 63, 782-792, doi:10.1111/j.1600-0870.2011.00527.x.
  14. Hollingsworth, A., and P. Lonnberg, 1986: The statistical structure of short-range forecast errors as determined from radiosonde data. Part I: The wind field. Tellus, Ser A, Dyn Meterol Oceanogr., 38A, 111-136. https://doi.org/10.1111/j.1600-0870.1986.tb00460.x
  15. Hong, S.-Y., and Coauthors, 2018: The Korean Integrated Model (KIM) system for global weather forecasting. Asia-Pac. J. Atmos. Sci., 54, 267-292. https://doi.org/10.1007/s13143-018-0028-9
  16. Kalnay, E., 2003: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press, 341 pp.
  17. Kang, J.-H., and Coauthors, 2018: Development of an observation processing package for data assimilation in KIAPS. Asia-Pac. J. Atmos. Sci., 54, 303-318, doi:10.1007/s13143-018-0030-2.
  18. Kim, E., C.-H. J. Lyu, K. Anderson, R. V. Leslie, and W. J. Blackwell, 2014: S-NPP ATMS instrument prelaunch and on-orbit performance evaluation. J. Geophys. Res. Atmos., 119, 5653-5670, doi:10.1002/2013JD020483.
  19. Kwon, I.-H., and Coauthors, 2018: Development of an operational hybrid data assimilation system at KIAPS. Asia-Pac. J. Atmos. Sci., 54, 319-335, doi:10.1007/s13143-018-0029-8.
  20. Rutherford, I. D., 1972: Data assimilation by statistical interpolation of forecast error fields. J. Atmos. Sci., 29, 809-815. https://doi.org/10.1175/1520-0469(1972)029<0809:DABSIO>2.0.CO;2
  21. Weston, P. P., W. Bell, and J. R. Eyre, 2014: Accounting for error in the assimilation of high-resolution sounder data. Q. J. R. Meteorol. Soc., 140, 2420-2429, doi:10.1002/qj.2306.