• Title/Summary/Keyword: Seashore waste

Search Result 12, Processing Time 0.035 seconds

A Study on Contaminant Sorption Capacity of Soil Liner for Seashore Waste Landfill by Using Column Test Apparatus (주상시험장치를 이용한 해안 폐기물 매립장 지반토지 오염물 흡착능에 관한 연구)

  • Jang, Yeon-Su;Han, Seong-Gil;Kim, Su-Sam
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.75-84
    • /
    • 1997
  • In this paper, the retardation capacity of marine clay and weathered soil of seashore waste landfill is analyzed by using a laboratory column apparatus for organic and inorganic components which can represent the components of the leachate of municipal waste landfill. The results show that sorption capacity marine clay for potassium is larger than that of weathered soil. Lead and cadmium are adsorbed completely at concentrations higher than the real concentrations developed in the landfill. The bottom soils of seashore landfill can also retard some nondegradable components of organics although their sorption capacities for organics were less than those for inorganics.

  • PDF

Permeability and strength characteristics of Self-Sealing and Self-Beating materials as landfill liners (매립지 차수재로서 자가치유재의 투수 및 강도특성)

  • 장연수;문준석
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.1
    • /
    • pp.41-51
    • /
    • 2002
  • Recently, domestic waste landfills are constructed sometimes on seashore area to provide large landfill area. In order to strengthen the foundation of landfills and to prevent the infiltration of leachate through the bottom, many cases of constructing cement hardened liners on seashore clays are found. In these cases, it is possible to have cracks in the hardened liners due to settlement with waste load since the stiffness of the hardened liner Is greater than that of clay liners. In this study, the capability of Self-Sealing and Self-Healing (SSSH) liner made with a seashore clay in the metropolitan landfill to prevent the percolation of water and leachate is examined using flexible-wall permeameter test and using uniaxial compression test. Applicability of SSSH to weathered granitic soil is also examined for self-sealing capabilities. The result of Flexible permeameter test for SSSH with the seashore clay showed that permeability obtained was lower than permeability criteria of Korean waste management law. The permeability and strength characteristics of SSSH with granitic soil and bentonite showed better results than with the seashore clay.

A study on the Calcination Characteristics and Supporter for Durability using waste shell such as Crassostrea gigas (패각의 소성 특성 및 지속성 담지체 제조에 관한 연구)

  • Kim, Yong-Ryul;Yoon, Cheol-Hun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.143-150
    • /
    • 2009
  • Today, wastes of much quantity by fast industrialization and increase in population, population concentration etc. of modem society are increasing. Much oyster shell is breeding by character and conduct of oyster-industry for a long time among them. Oyster shell which breed by-product in oyster cultivating industry that specific gravity of domestic seashore cultivating industry is high is causing environmental problem by problem and so on hindrance, nature spectacle's waste and health hygiene on administration if it is pollution of district along the coast fishing ground, number of public ownership being stored in open area in seashore. About new material just-in-time through recycling and he of oyster shell by these problem wide that study. Go forward more and investigate special quality that is oyster shell's physical chemistry red in this research and oyster shell oyster shell which cause several environmental problems developing ability agricultural chemicals that use this encapsulating micro by ability carrier that is environmentally application possibility examine wish to.

A Study on the Mechanical Properties of Mortar Using Steen Slag Fine Aggregate (제강슬래그 잔골재 사용 모르타르의 역학적 특성에 대한 고찰)

  • 문한영;유정훈;박영훈;강정용;정문철;송준혁
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.322-325
    • /
    • 2003
  • Recently, as quality river aggregates like sands and gravels become scarce, use of crushed stones and sands, seashore sands, and seashore gravels is increasing abruptly. And, aggregates recycled from slags and waste concretes are used. However, since the converter slag easily expands and breaks due to free lime, differently from the blast-furnace slag, it is not suitable for use as concrete aggregates. Since the atomized steel slag aggregate has slippery surface and spherical shape, the mortar flowing characteristics improved as the atomized steel slag content increases, without regard to the aggregates coarseness and water/cement ratio. The flow characteristics loss rate of the mortar manufactured from steel slag aggregates was similar to that of the mortar manufactured from washed sand only. The compact strength of the mortar manufactured from coarse PS Ball were larger than that manufactured from washing sand only.

  • PDF

Analysis of Measurement Data for Stability of Seashore Waste Landfills (해안 폐기물매립지 안정을 위한 계측자료 분석)

  • Jang, Yeon-Soo;Choi, Jong-Sig;Ryu, Hye-Rim;Kim, Dong-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.947-954
    • /
    • 2008
  • Waste landfills built on weak soils have the possibilities of the failure of slope and foundation due to the disposed waste loads. To ensure the landfill will sustain its stability within a limited site area, it's necessary to investigate and understand the characteristics of soft land by identifying the requirements for waste filling and by quantitative field measurement and management of landfills. In this paper, the stability analyses are performed using the field measurement data of Gimpo #2 Metropolitan Landfil. For the stability analysis, Tominaga-Hashimoto method and Kuriharh method, which may be able to manage the stability of the landfill quantitatively, are used.

  • PDF

Bioethanol Production from Seaweed Ulva pertusa for Environmental Application (해조류 구멍갈파래 (Ulva pertusa)의 친환경적 이용을 위한 바이오에탄올의 생산)

  • Kim, Jong-Deog;Yoon, Yang-Ho;Shin, Tai-Sun;Kim, Min-Yong;Byun, Hyun-Soo;Oh, Seok-Jin;Seo, Hyo-Jin
    • KSBB Journal
    • /
    • v.26 no.4
    • /
    • pp.317-322
    • /
    • 2011
  • Ulva pertusa is one of the worst pollutant like a waste vinyl after agriculture and caused bad smell at seashore in Jejudo and south area of korean peninsular. For favorable environmental utilization of Ulva pertusa, it could be applied for ethanol production with its acid hydrolysate. The components of hydrolysate included fermentable sugar of glucose, xylose, mannose, galactose, and higher amounts of unfermentable rhamnose. Fermentable sugars were converted to ethanol with S. cerevisiae, also xylose to ethanol with P. stipitis, their maximun ethanol production at optimum conditions were 462 ${\mu}g$/mL and 475 ${\mu}g$/mL, respectively. While, rhamnose cannot be changed to ethanol with S. cerevisiae or P. stipitis, alone. Combination of S. cerevisiae and P. stipitis can convert rhamnose to ethanol, because P.stipitis degradaded rhamnose to pyruvate, and then S. cerevisiae convert to ethanol, at optimum conditions, ethanol reached to 782 ${\mu}g$/mL (30.24%) that is higher than that of 2 strain alone from 500 mg of dried Ulva pertusa contained 2586.45 ${\mu}g$/mL of reduced sugars. Ulva pertusa can be utilized for renewal energy insted of environmenatal enemy.

Fundamental Study on Recycling Waste Foundry Sand as Fine Aggregate for Concrete (폐주물사를 콘크리트용 잔골재로 재활용하기 위한 기초연구)

  • 문한영;최연왕;송용규;신동구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.281-286
    • /
    • 2001
  • The development of automobile, vessel, rail road, and machine industry leads increase of foundry production used as their components, which cause a by-product, waste foundry sand (WFS). The amount of the WFS produced in Korea is over 900,000 ton a year, but most WFS buries itself and only 5~6% WFS is recycled as a material in construction materials. In this study, WFS is used as a fine aggregate for concrete. Five types of concretes aimed at the specified strength of 240$\pm$10 kgf/$cm^{2}$ , air contents of 4.5$\pm$1% and slump of 12$\pm$1.5cm were mixed with washed coarse seashore sand(WFS) in which salt was removed and then optimum mix proportion of concrete was determined. Moreover, basic properties such as setting time, workability, bleeding and slump loss of the fresh concrete with WFS were tested and compared with those of the concrete mixed without WFS. In .addition, both compressive strength of hardened concrete at each ages and tensile strength of it at the age of 28 days were measured and discussed.

  • PDF

Leachate Behavior and Hydraulic Property of Domestic Seashore Landfill From Field Investigation (현장조사에 의한 국내 해안 폐기물 매립장의 침출수 거동과 수리특성)

  • 장연수;조용주
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.32-37
    • /
    • 1998
  • In this paper, the role of intermediate cover soils with respect to the leachate and gas flow is investigated from various field investigations and the hydraulic conductivity of the disposed waste is obtained using pumping and slug tests. From the results of field investigations, it was found that the flow of leachate and gas is prevented by the buried cover soils. The hydraulic conductivities of field pumping test and slug tests are well matched and stayed in the range of hydraulic conductivities of well compacted wastes in the literature.

  • PDF

Leachate Behavior within the Domestic Seashore Landfill(I)- Hydrogeologic Property Identification through In-situ Tests - (폐기물 매립지 내에서의 침출수 거동(I)- 현장조사를 통한 수리지반 특성 -)

  • 장연수;조용주
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.99-109
    • /
    • 1999
  • In the case of domestic general waste landfills, cumulated leachate level is often formed in the landfill due to the waste of high moisture content and it becomes important to characterize the hydraulic properties of the disposed waste. Although many hydrologic studies have been peformed for leachate barriers and pheriperal subsurface environments, few studies have been done to investigate the hydraulic property of the disposed waste and cover soils and to analyse the leachate flow behavior within landfills. In this paper, the geotechnical properties of the waste and buried cover soils are identified through the field experiment including pumping and slug tests. The results of various tests show that the field density of the cover soils is somewhat higher than the maximum laboratory density of cover soils and the vertical flow of leachate and gas in the landfill is prevented by the buried cover soils. The hydraulic conductivities of field pumping test and slug tests are well matched and stayed in the range of hydraulic conductivities of well compacted wastes in the literature.

  • PDF

Fundamental Properties of Mortar and Concrete Using Waste foundry Sand

  • Moon Han-Young;Choi Yun-Wang;Song Yong-Kyu;Jeon Jung-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.141-147
    • /
    • 2005
  • The development of automobile, vessel, rail road, and machine industry leads an increase of foundry production used as their components, which cause a by-product, waste foundry sand (WFS). The amount of the WFS produced in Korea is over 700,000 tons a year, but most WFS has been buried itself and only $5{\~}6\%$ WFS is recycled as construction materials. Therefore, it is necessary for most WFS to research other ways which can be used in a higher value added product. The study on recycling it as a fine aggregate for concrete or green sand has been in progress in America and Japan since 1970s and 1980s respaectively. In this study, two types of WFS were used as a fine aggregate for concrete. Nine types of concrete aimed at the specified strength of 30 MPa were mixed with washed seashore coarse sand in which salt was removed, and WFS and then appropriate mixture proportion of concrete was determined. Moreover, basic properties such as air contents, setting time, bleeding, workability and slump loss of the fresh concrete with WFS were tested and compared with those of the concrete mixed without WFS. In addition, both compressive strength of hardened concrete at each ages and tensile strength of it at the age of 28 days were measured and discussed.