Browse > Article
http://dx.doi.org/10.7841/ksbbj.2011.26.4.317

Bioethanol Production from Seaweed Ulva pertusa for Environmental Application  

Kim, Jong-Deog (Research center on Anti-Obesity and Health Care, Chonnam National University)
Yoon, Yang-Ho (Marine Future Resources Development Agency, Chonnam National University)
Shin, Tai-Sun (Marine Future Resources Development Agency, Chonnam National University)
Kim, Min-Yong (Marine Future Resources Development Agency, Chonnam National University)
Byun, Hyun-Soo (Marine Future Resources Development Agency, Chonnam National University)
Oh, Seok-Jin (Department of Oceanography, Pukyong National University)
Seo, Hyo-Jin (Marine Future Resources Development Agency, Chonnam National University)
Publication Information
KSBB Journal / v.26, no.4, 2011 , pp. 317-322 More about this Journal
Abstract
Ulva pertusa is one of the worst pollutant like a waste vinyl after agriculture and caused bad smell at seashore in Jejudo and south area of korean peninsular. For favorable environmental utilization of Ulva pertusa, it could be applied for ethanol production with its acid hydrolysate. The components of hydrolysate included fermentable sugar of glucose, xylose, mannose, galactose, and higher amounts of unfermentable rhamnose. Fermentable sugars were converted to ethanol with S. cerevisiae, also xylose to ethanol with P. stipitis, their maximun ethanol production at optimum conditions were 462 ${\mu}g$/mL and 475 ${\mu}g$/mL, respectively. While, rhamnose cannot be changed to ethanol with S. cerevisiae or P. stipitis, alone. Combination of S. cerevisiae and P. stipitis can convert rhamnose to ethanol, because P.stipitis degradaded rhamnose to pyruvate, and then S. cerevisiae convert to ethanol, at optimum conditions, ethanol reached to 782 ${\mu}g$/mL (30.24%) that is higher than that of 2 strain alone from 500 mg of dried Ulva pertusa contained 2586.45 ${\mu}g$/mL of reduced sugars. Ulva pertusa can be utilized for renewal energy insted of environmenatal enemy.
Keywords
Ulva pertusa; Seashore waste; $H_2SO_4$; Rhamnose; S. cerevisiae; P. stipitis; Combined strain; Ethanol;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bakker, B. M., C. Bro, P. Kotter, M. A. Luttik, J. P. Dijken, and J. T. Pronk (2000) The mitochondrial alcohol dehydrogenase Adh3p is involved in a redox shuttle in Saccharomyces cerevisiae. J. Bacteriol. 182: 4730-4737.   DOI   ScienceOn
2 Bakker, B. M., K. M. Overkamp, A. J. Maris, P. Kotter, M. A. Luttik, J. P. Dijken, and J. T. Pronk (2001) Stoichiometry and compartmentation of NADH metabolism in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 25: 15-37.   DOI   ScienceOn
3 Twerdochlib, A. L., F. O. Pedrosa, S. Funayama, and L. U. Rigo (1994) L-rhamnose metabolism in Pichia stipitis and Debaryomyces polymorphus. Can. J. Microbiol. 40: 896-902.   DOI   ScienceOn
4 Koivistoinen, O. M., S. Hilditch, S. P. Voutilainen, H. Boer, M. Penttilä, and P. Richard (2008) Identification in the yeast Pichia stipitis of the first L-rhamnose-1-dehydrogenase gene. FEBS J. 275: 2482-2488.   DOI   ScienceOn
5 Seiya, W., S. Piyanart, and K. Makino (2008) Metabolic fate of L-lactaldehyde derived from an alternative L-rhamnose pathway. FEBS J. 275: 5139-5149.   DOI   ScienceOn
6 Seiya, W., M. Saimura, and K. Makino (2008) Eukaryotic and Bacterial Gene Clusters Related to an Alternative Pathway of Nonphosphorylated L-Rhamnose Metabolism. J. Biological Chem. 283: 20372-20382.   DOI
7 Michelle, M. C., J. Boonstra, J. Arie, and C. T. Verrips (1996) Kinetic analysis of hexose uptake in Saccharomyces cerevisiae cultivated in continuous culture. Biochimica et Biophysics Acta 1277: 209-216.   DOI   ScienceOn
8 Preez, J. C., B. van Driessel, and B. A. Prior (1989) D-Xylose fermentation by Candida shehatae and Pichia stipitis at low dissolved oxygen levels in fed-batch cultures. Biotechnol. Lett. 2: 131-136.
9 Michael, V., R. Kratzer, B. Nidetzky, and L. Brecker (2011) Candida tenuis xylose reductase catalysed reduction of acetophenones: the effect of ring-substituents on catalytic efficiency. Organic & Biomolecular Chemistry, www.rsc.org/obc
10 Regina, K. and B. Nidetzky (2007) Identification of Candida tenuis xylose reductase as highly selective biocatalyst for the synthesis of aromatic a-hydroxy esters and improvement of its efficiency by protein engineering. Chem. Commun. 22: 1047-1049.
11 Savitree, L., T. Sumpradit, V. Kitpreechavanich, M. Tuntirungkij, T. Seki, and T. Yoshida (2000) Effect of Acetic Acid on Growth and Ethanol Fermentation of Xylose Fermenting Yeast and Saccharomyces cerevisiae. Kasetsart J. (Nat. Sci.) 34 : 64-73.
12 Masahiko, T., K. Kubota, N. Matsushita, and K. Togashi (2010) Discovery of mycangia and the associated xylose-fermenting yeasts in stag beetles (Coleoptera: Lucanidae). Naturwissenschaften 97: 311-317.   DOI   ScienceOn
13 Toivari, M. H., A. Aristidou, L. Ruohonen, and M. Penttila (2001) Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae: Importance of xylulokinase (XKS1) and oxygen availability. Metabolic Engineering 3: 236-249.   DOI   ScienceOn
14 Bao, X., D. Gao, Y. Qu, Z. Wang, M. Walfridssion, and B. H. Hagerbal (1997) Effect on product formation in recombinant Saccharomyces cerevisiae strains expressing different levels of xylose metabolic genes. Chin. J. Biotechnol. 13: 225-231.
15 Linko, Y. Y., H. Kautola, S. Uotila, and P. Linko (1986) Alcoholic fermentation of D-xylose by immobilized Pichia stipitis yeast. Biotechnol. Lett. 8: 47-52.   DOI   ScienceOn
16 Almeida, R. M., T. Modig, A. Rer1, G. Lid, and M. F. Gorwa- Grauslund (2008) Pichia stipitis xylose reductase helps detoxifying lignocellulosic hydrolysate by reducing 5-hydroxymethyl-furfural (HMF). Biotechnology for Biofuels 1: 12-18.   DOI
17 Metzger, M. H. and C. P. Hollenberg (1995) Amino acid substitutions in the yeast Pichia slipitis xylitol dehydrogenase coenzyme-binding domain affect the coenzyme specificity. Eur. J. Biochem. 228: 50-54.   DOI   ScienceOn
18 Laplace, J. M., J. P. Delgenes, R. Moletta, and J. M. Navarro (1991) Alcoholic fermentation of glucose and xylose by Pichia stipitis, Candida shehatae, Saccharomyces cerevisiae and Zymomonas mobilis: oxygen requirement as a key factor. Appl. Microbiol Biotechnol. 36: 158-162.   DOI   ScienceOn
19 Barnett, J. A., R. W. Payne, and D. Yarrow (1990) Yeasts; Characteristics and identification. Cambridge University Press, Cambridge, UK. ISBN 0-521-35056-5.
20 Toivola, A., D. Yarrow, E. V. Bosch, J. P. Dijken, and A. A. Scheffersi (1984) Alcoholic fermentation of D-Xylose by yeasts. Appl. Environ. Microbiol. 47: 1221-1223.
21 Park, J. Y., R. Shiroma, M. Imran, Y. Zhang, M. Ike, Y. A. Sanoh, A. Ida, M. Kondo, and K. Tokuyasu (2010) A novel lime pretreatment for subsequent bioethanol production from rice straw. Calcium capturing by carbonation (CaCCO) process. Bioresource Technology 101: 6805-6811.   DOI   ScienceOn
22 Antonius J. A. van Maris, A. Derek, E. Bellissimi, J. Brink, M. Kuyper, M. A. H. Luttik, H. W. Wisselink, W. A. Scheffers, J. P. van Dijken, and J. T. Pron (2006) Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie van Leeuwenhoek 90: 391-418.   DOI   ScienceOn
23 Delgenes, J. P., R. Moletta, and J. M. Navarro (1996) Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae. Enzyme and Microbial Technology 19: 220-225.   DOI   ScienceOn
24 Slininger, P. J., R. J. Bothast, J. E. Vancauwenberge, and C. P. Kurtzman (1982) Conversion of D-xylose to ethanol by the yeast Pachysolen tannophilus. Biotechnol. Bioeng. 24: 371-384.   DOI
25 Heredia, C. F., A. Sols, and G. DelaFuente (1968) Specificity of the constitutive hexose transport in yeast. Eur. J. Biochem. 5: 321-329.   DOI   ScienceOn
26 Gong, C. S., L. F. Chen, M. C. Flickinger, L. C. Chiang, and G. T. Tsao (1981) Production of ethanol from D-xylose by using D-xylose isomerase and yeasts. Appl. Environ. Microbiol. 41: 430-436.
27 Gong, C. S., L. D. McCracken, and G. T. Tsao (1981) Direct fermentation of D-xylose to ethanol by a xylose-fermentating yeast mutant, Candida sp Xf217. Biotechnol. Lett. 3: 245-250.   DOI   ScienceOn