• Title/Summary/Keyword: Search weight

Search Result 503, Processing Time 0.03 seconds

An Algorithm for Computing the Weight Enumerating Function of Concatenated Convolutional Codes (연쇄 컨볼루션 부호의 가중치 열거함수 계산 알고리듬)

  • 강성진;권성락;이영조;강창언
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.7A
    • /
    • pp.1080-1089
    • /
    • 1999
  • The union upper bounds to the bit error probability of maximum likelihood(ML) soft-decoding of parallel concatenated convolutional codes(PCCC) and serially concatenated convolutional codes(SCCC) can be evaluated through the weight enumerating function(WEF). This union upper bounds become the lower bounds of the BER achievable when iterative decoding is used. In this paper, to compute the WEF, an efficient error event search algorithm which is a combination of stack algorithm and bidirectional search algorithm is proposed. By computor simulation, it is shown that the union boounds obtained by using the proposed algorithm become the lower bounds to BER of concatenated convolutional codes with iterative decoding.

  • PDF

A Weighted based Pre-Perform A* Algorithm for Efficient Heuristics Computation Processing (효율적인 휴리스틱 계산 처리를 위한 가중치 기반의 선수행 A* 알고리즘)

  • Oh, Min-Seok;Park, Sung-Jun
    • Journal of Korea Game Society
    • /
    • v.13 no.6
    • /
    • pp.43-52
    • /
    • 2013
  • Path finder is one of the very important algorithm of artificial intelligence and is a process generally used in many game fields. Path finder requires many calculation, so it exerts enormous influences on performances. To solve this, many researches on the ways to reduce the amount of calculate operations have been made, and the typical example is A* algorithm but it has unnecessary computing process, reducing efficiency. In this paper, to reduce the amount of calculate operations such as node search with costly arithmetic operations, we proposes the weight based pre-processing A* algorithm. The simulation was materialized to measure the efficiency of the weight based pre-process A* algorithm, and the results of the experiments showed that the weight based method was approximately 1~2 times more efficient than the general methods.

A relevance-based pairwise chromagram similarity for improving cover song retrieval accuracy (커버곡 검색 정확도 향상을 위한 적합도 기반 크로마그램 쌍별 유사도)

  • Jin Soo Seo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.2
    • /
    • pp.200-206
    • /
    • 2024
  • Computing music similarity is an indispensable component in developing music search service. This paper proposes a relevance weight of each chromagram vector for cover song identification in computing a music similarity function in order to boost identification accuracy. We derive a music similarity function using the relevance weight based on the probabilistic relevance model, where higher relevance weights are assigned to less frequently-occurring discriminant chromagram vectors while lower weights to more frequently-occurring ones. Experimental results performed on two cover music datasets show that the proposed music similarity improves the cover song identification performance.

Minimum Weight Design of Laminated Composite Panel under Combined Loading (조합하중이 작용하는 복합적층 패널의 최소중량화설계)

  • Lee Jong-Sun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.95-101
    • /
    • 2006
  • Minimum weight design of laminated composite panel under combined loading was studied using linear and nonlinear deformation theories and by closed-form analysis and finite difference energy methods. Various buckling load factors are obatined for laminated composite panels with rectangular type longitudinal stiffeners and various longitudinal length to radius ratios, which are made from Carbon/Epoxy USNl25 prepreg and are simply-supported on four edges under combined loading, and then for them, minimum weight design analyses are carried out by the nonlinear search optimizer, ADS. This minimum weight design analyses are constructed with various process such as the simple design process, test simulation process and sensitivity analysis. Subseguently, the buckling mode shapes are obtained by buckling and minimum weight analyses.

Precision Analysis of the STOMP(FW) Algorithm According to the Spatial Conceptual Hierarchy (공간 개념 계층에 따른 STOMP(FW) 알고리즘의 정확도 분석)

  • Lee, Yon-Sik;Kim, Young-Ja;Park, Sung-Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.5015-5022
    • /
    • 2010
  • Most of the existing pattern mining techniques are capable of searching patterns according to the continuous change of the spatial information of an object but there is no constraint on the spatial information that must be included in the extracted pattern. Thus, the existing techniques are not applicable to the optimal path search between specific nodes or path prediction considering the nodes that a moving object is required to round during a unit time. In this paper, the precision of the path search according to the spatial hierarchy is analyzed using the Spatial-Temporal Optimal Moving Pattern(with Frequency & Weight) (STOPM(FW)) algorithm which searches for the optimal moving path by considering the most frequent pattern and other weighted factors such as time and cost. The result of analysis shows that the database retrieval time is minimized through the reduction of retrieval range applying with the spatial constraints. Also, the optimal moving pattern is efficiently obtained by considering whether the moving pattern is included in each hierarchical spatial scope of the spatial hierarchy or not.

Analysis of Preference Criteria for Personalized Web Search (개인화된 웹 검색을 위한 선호 기준 분석)

  • Lee, Soo-Jung
    • The Journal of Korean Association of Computer Education
    • /
    • v.13 no.1
    • /
    • pp.45-52
    • /
    • 2010
  • With rapid increase in the number of web documents, the problem of information overload in Internet search is growing seriously. In order to improve web search results, previous research studies employed user queries/preferred words and the number of links in the web documents. In this study, performance of the search results exploiting these two criteria is examined and other preference criteria for web documents are analyzed. Experimental results show that personalized web search results employing queries and preferred words yield up to 1.7 times better performance over the current search engine and that the search results using the number of links gives up to 1.3 times better performance. Although it is found that the first of the user's preference criteria for web documents is the contents of the document, readability and images in the document are also given a large weight. Therefore, performance of web search personalization algorithms will be greatly improved if they incorporate objective data reflecting each user's characteristics in addition to the number of queries and preferred words.

  • PDF

Consensus-based Autonomous Search Algorithm Applied for Swarm of UAVs (군집 무인기 활용을 위한 합의 기반 자율 탐색 알고리즘)

  • Park, Kuk-Kwon;Kwon, Ho-Jun;Choi, Eunju;Ryoo, Chang-Kyung
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.5
    • /
    • pp.443-449
    • /
    • 2017
  • Swarm of low-cost UAVs for search mission has benefit in the sense of rapid search compared to use of single high-end UAV. As the number of UAVs forming swarm increases, not only the time for the mission planning increases, but also the system to operate UAVs has excessive burden. This paper addresses a decentralized area search algorithm adequate for multiple UAVs which takes advantages of flexibility, robustness, and simplicity. To down the cost, it is assumed that each UAV has limited ability: close-communication, basic calculation, and limited memory. In close-communication, heath conditions and search information are shared. And collision avoidance and consensus of next search direction are then done. To increase weight on un-searched area and to provide overlapped search, the score function is introduced. Performance and operational characteristics of the proposed search algorithm and mission planning logic are verified via numerical simulations.

Optimization Study of a Helicopter Rotor Blade Section Using EDISON Ksec2D and Grid Search Method (EDISON Ksec2D와 Grid Search 법을 이용한 헬리콥터 블레이드 단면의 형상 최적화)

  • Na, Deok-Hwan;Hahm, Jae-Joon;Bae, Jae-Seong
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.183-189
    • /
    • 2016
  • In this paper, an optimization study on a helicopter rotor blade cross-section was made. Generalization was made to the baseline cross-section to simplify the analysis. To have better performance in aeroelastic response, with the aerodynamic center being the origin of the baseline, the distance between aerodynamic center and shear center, and the distance between mass center and shear center of the blade were minimized. For efficient searching of optimum solutions over the design space, grid search method, which is a method of graphical search was used. Two design variables, radius of balancing weight at leading edge, and offset of the spar from leading edge were selected for the study. Cubic spline interpolation method was used to accommodate searching of the optimum solution. 2-Leveled searching system was devised in accordance with the interpolation method. Optimum solution was found to show 6% decrease in both distance between aerodynamic center and shear center, and mass center and shear center to the baseline.

  • PDF

Simulated squirrel search algorithm: A hybrid metaheuristic method and its application to steel space truss optimization

  • Pauletto, Mateus P.;Kripka, Moacir
    • Steel and Composite Structures
    • /
    • v.45 no.4
    • /
    • pp.579-590
    • /
    • 2022
  • One of the biggest problems in structural steel calculation is the design of structures using the lowest possible material weight, making this a slow and costly process. To achieve this objective, several optimization methods have been developed and tested. Nevertheless, a method that performs very efficiently when applied to different problems is not yet available. Based on this assumption, this work proposes a hybrid metaheuristic algorithm for geometric and dimensional optimization of space trusses, called Simulated Squirrel Search Algorithm, which consists of an association of the well-established neighborhood shifting algorithm (Simulated Annealing) with a recently developed promising population algorithm (Squirrel Search Algorithm, or SSA). In this study, two models are tried, being respectively, a classical model from the literature (25-bar space truss) and a roof system composed of space trusses. The structures are subjected to resistance and displacement constraints. A penalty function using Fuzzy Logic (FL) is investigated. Comparative analyses are performed between the Squirrel Search Algorithm (SSSA) and other optimization methods present in the literature. The results obtained indicate that the proposed method can be competitive with other heuristics.

Structural Optimization of Planar Truss using Quantum-inspired Evolution Algorithm (양자기반 진화알고리즘을 이용한 평면 트러스의 구조최적화)

  • Shon, Su-Deok;Lee, Seung-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.1-9
    • /
    • 2014
  • With the development of quantum computer, the development of the quantum-inspired search method applying the features of quantum mechanics and its application to engineering problems have emerged as one of the most interesting research topics. This algorithm stores information by using quantum-bit superposed basically by zero and one and approaches optional values through the quantum-gate operation. In this process, it can easily keep the balance between the two features of exploration and exploitation, and continually accumulates evolutionary information. This makes it differentiated from the existing search methods and estimated as a new algorithm as well. Thus, this study is to suggest a new minimum weight design technique by applying quantum-inspired search method into structural optimization of planar truss. In its mathematical model for optimum design, cost function is minimum weight and constraint function consists of the displacement and stress. To trace the accumulative process and gathering process of evolutionary information, the examples of 10-bar planar truss and 17-bar planar truss are chosen as the numerical examples, and their results are analyzed. The result of the structural optimized design in the numerical examples shows it has better result in minimum weight design, compared to those of the other existing search methods. It is also observed that more accurate optional values can be acquired as the result by accumulating evolutionary information. Besides, terminal condition is easily caught by representing Quantum-bit in probability.