• Title/Summary/Keyword: Search Tree

Search Result 636, Processing Time 0.028 seconds

PdR-Tree : An Efficient Indexing Technique for the improvement of search performance in High-Dimensional Data (PdR-트리 : 고차원 데이터의 검색 성능 향상을 위한 효율적인 인덱스 기법)

  • Joh, Beom-Seok;Park, Young-Bae
    • The KIPS Transactions:PartD
    • /
    • v.8D no.2
    • /
    • pp.145-153
    • /
    • 2001
  • The Pyramid-Technique is based on mapping n-dimensional space data into one-dimensional data and expressing it as B-tree ; and by solving the problem of search time complexity the pyramid technique also prevents the effect \"phenomenon of dimensional curse\" which is caused by treatment of hypercube range query in n-dimensional data space. The Spherical Pyramid-Technique applies the pyramid method’s space division strategy, uses spherical range query and improves the search performance to make it suitable for similarity search. However, depending on the size of data and change in dimensions, the two above technique demonstrate significantly inferior search performance for data sizes greater than one million and dimensions greater than sixteen. In this paper, we propose a new index-structured PdR-Tree to improve the search performance for high dimensional data such as multimedia data. Test results using simulation data as well as real data demonstrate that PdR-Tree surpasses both the Pyramid-Technique and Spherical Pyramid-Technique in terms of search performance.

  • PDF

CS-Tree : Cell-based Signature Index Structure for Similarity Search in High-Dimensional Data (CS-트리 : 고차원 데이터의 유사성 검색을 위한 셀-기반 시그니쳐 색인 구조)

  • Song, Gwang-Taek;Jang, Jae-U
    • The KIPS Transactions:PartD
    • /
    • v.8D no.4
    • /
    • pp.305-312
    • /
    • 2001
  • Recently, high-dimensional index structures have been required for similarity search in such database applications s multimedia database and data warehousing. In this paper, we propose a new cell-based signature tree, called CS-tree, which supports efficient storage and retrieval on high-dimensional feature vectors. The proposed CS-tree partitions a high-dimensional feature space into a group of cells and represents a feature vector as its corresponding cell signature. By using cell signatures rather than real feature vectors, it is possible to reduce the height of our CS-tree, leading to efficient retrieval performance. In addition, we present a similarity search algorithm for efficiently pruning the search space based on cells. Finally, we compare the performance of our CS-tree with that of the X-tree being considered as an efficient high-dimensional index structure, in terms of insertion time, retrieval time for a k-nearest neighbor query, and storage overhead. It is shown from experimental results that our CS-tree is better on retrieval performance than the X-tree.

  • PDF

The Best Sequence of Moves and the Size of Komi on a Very Small Go Board, using Monte-Carlo Tree Search (몬테카를로 트리탐색을 활용한 초소형 바둑에서의 최상의 수순과 덤의 크기)

  • Lee, Byung-Doo
    • Journal of Korea Game Society
    • /
    • v.18 no.5
    • /
    • pp.77-82
    • /
    • 2018
  • Go is the most complex board game in which the computer can not search all possible moves using an exhaustive search to find the best one. Prior to AlphaGo, all powerful computer Go programs have used the Monte-Carlo Tree Search (MCTS) to overcome the difficulty in positional evaluation and the very large branching factor in a game tree. In this paper, we tried to find the best sequence of moves using an MCTS on a very small Go board. We found that a $2{\times}2$ Go game would be ended in a tie and the size of Komi should be 0 point; Meanwhile, in a $3{\times}3$ Go Black can always win the game and the size of Komi should be 9 points.

Cache Sensitive T-tree Main Memory Index for Range Query Search (범위질의 검색을 위한 캐시적응 T-트리 주기억장치 색인구조)

  • Choi, Sang-Jun;Lee, Jong-Hak
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.10
    • /
    • pp.1374-1385
    • /
    • 2009
  • Recently, advances in speed of the CPU have for out-paced advances in memory speed. Main-memory access is increasingly a performance bottleneck for main-memory database systems. To reduce memory access speed, cache memory have incorporated in the memory subsystem. However cache memories can reduce the memory speed only when the requested data is found in the cache. We propose a new cache sensitive T-tree index structure called as $CST^*$-tree for range query search. The $CST^*$-tree reduces the number of cache miss occurrences by loading the reduced internal nodes that do not have index entries. And it supports the sequential access of index entries for range query by connecting adjacent terminal nodes and internal index nodes. For performance evaluation, we have developed a cost model, and compared our $CST^*$-tree with existing CST-tree, that is the conventional cache sensitive T-tree, and $T^*$-tree, that is conventional the range query search T -tree, by using the cost model. The results indicate that cache miss occurrence of $CST^*$-tree is decreased by 20~30% over that of CST-tree in a single value search, and it is decreased by 10~20% over that of $T^*$-tree in a range query search.

  • PDF

Performance Enhancement of a DVA-tree by the Independent Vector Approximation (독립적인 벡터 근사에 의한 분산 벡터 근사 트리의 성능 강화)

  • Choi, Hyun-Hwa;Lee, Kyu-Chul
    • The KIPS Transactions:PartD
    • /
    • v.19D no.2
    • /
    • pp.151-160
    • /
    • 2012
  • Most of the distributed high-dimensional indexing structures provide a reasonable search performance especially when the dataset is uniformly distributed. However, in case when the dataset is clustered or skewed, the search performances gradually degrade as compared with the uniformly distributed dataset. We propose a method of improving the k-nearest neighbor search performance for the distributed vector approximation-tree based on the strongly clustered or skewed dataset. The basic idea is to compute volumes of the leaf nodes on the top-tree of a distributed vector approximation-tree and to assign different number of bits to them in order to assure an identification performance of vector approximation. In other words, it can be done by assigning more bits to the high-density clusters. We conducted experiments to compare the search performance with the distributed hybrid spill-tree and distributed vector approximation-tree by using the synthetic and real data sets. The experimental results show that our proposed scheme provides consistent results with significant performance improvements of the distributed vector approximation-tree for strongly clustered or skewed datasets.

An Index Structure for Efficiently Handling Dynamic User Preferences and Multidimensional Data (다차원 데이터 및 동적 이용자 선호도를 위한 색인 구조의 연구)

  • Choi, Jong-Hyeok;Yoo, Kwan-Hee;Nasridinov, Aziz
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.7
    • /
    • pp.925-934
    • /
    • 2017
  • R-tree is index structure which is frequently used for handling spatial data. However, if the number of dimensions increases, or if only partial dimensions are used for searching the certain data according to user preference, the time for indexing is greatly increased and the efficiency of the generated R-tree is greatly reduced. Hence, it is not suitable for the multidimensional data, where dimensions are continuously increasing. In this paper, we propose a multidimensional hash index, a new multidimensional index structure based on a hash index. The multidimensional hash index classifies data into buckets of euclidean space through a hash function, and then, when an actual search is requested, generates a hash search tree for effective searching. The generated hash search tree is able to handle user preferences in selected dimensional space. Experimental results show that the proposed method has better indexing performance than R-tree, while maintaining the similar search performance.

HD-Tree: High performance Lock-Free Nearest Neighbor Search KD-Tree (HD-Tree: 고성능 Lock-Free NNS KD-Tree)

  • Lee, Sang-gi;Jung, NaiHoon
    • Journal of Korea Game Society
    • /
    • v.20 no.5
    • /
    • pp.53-64
    • /
    • 2020
  • Supporting NNS method in KD-Tree algorithm is essential in multidimensional data applications. In this paper, we propose HD-Tree, a high-performance Lock-Free KD-Tree that supports NNS in situations where reads and writes occurs concurrently. HD-Tree reduced the number of synchronization nodes used in NNS and requires less atomic operations during Lock-Free method execution. Comparing with existing algorithms, in a multi-core system with 8 core 16 thread, HD-Tree's performance has improved up to 95% on NNS and 15% on modifying in oversubscription situation.

An Algorithm for Construction of Distribution Breadth-First Search Tree Using New Threshold Values (새로운 임계값을 이용한 분산 너비우선탐색 트리(Distributed Breadth-First Search Tree)의 구성 에 관한 알고리즘)

  • 송인섭;신재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.5
    • /
    • pp.468-574
    • /
    • 1991
  • In construction of breadth-frist tree, the communication complexity can be reduced by efficent synchronization schemes based on several threshold values, We determine several new threshold values by considering the graph density represented as lognm, where n and m are the number of nodes and links., repectively. When thesethreshold values are used in the synchroization method for constructing distrbuted bradth-first search tree, we can obtain a more efficient algorithm in sparse graphs, and also, this algorithm has vthe same performance for communication complexity in dense graphs.

  • PDF

Sparse Signal Recovery via a Pruning-based Tree Search (트리제거 기법을 이용한 희소신호 복원)

  • Kim, Sangtae;Shim, Byonghyo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.11a
    • /
    • pp.1-3
    • /
    • 2015
  • In this paper, we propose a sparse signal reconstruction method referred to as the matching pursuit with a pruning-based tree search (PTS-MP). Two key ingredients of PTS-MP are the pre-selection to put a restriction on columns of the sensing matrix to be investigated and the tree pruning to eliminate unpromising paths from the search tree. In our simulations, we confirm that PTS-MP is effective in recovering sparse signals and outperforms conventional sparse recovery algorithms.

  • PDF

Efficient range search of CST-tree (CST-트리의 효과적인 범위 검색)

  • Kang Dae-Hee;Lee Jae-Won;Lee Sang-Goo
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06c
    • /
    • pp.67-69
    • /
    • 2006
  • 기술의 발달로 CPU의 속도는 메모리의 속도에 비해 급속한 속도로 발전하였다. 그 결과 데이터베이스 시스템을 포함한 다른 컴퓨터 응용분야에서 메모리의 접근속도가 병목현상을 일으키게 되었다. 그래서 메모리의 접근 속도를 줄이기 위해 캐시 메모리가 도입되었고, 이를 활용하여 CPU 캐시를 효율적으로 활용하기 위한 많은 연구들이 있었고, 그 중 하나가 CST(Cache Sensitive T-tree)이다. 이 인덱스 구조는 점 검색(Point search)에서는 좋은 성능을 보이지만 범위 검색(range search)에서는 그렇지 못하다. 본 논문에서는 범위 검색(range search)을 위한 CST-tree에 대한 구축 기법을 제안한다.

  • PDF