• Title/Summary/Keyword: Search Query

Search Result 690, Processing Time 0.025 seconds

Implementation of a Spam Message Filtering System using Sentence Similarity Measurements (문장유사도 측정 기법을 통한 스팸 필터링 시스템 구현)

  • Ou, SooBin;Lee, Jongwoo
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.1
    • /
    • pp.57-64
    • /
    • 2017
  • Short message service (SMS) is one of the most important communication methods for people who use mobile phones. However, illegal advertising spam messages exploit people because they can be used without the need for friend registration. Recently, spam message filtering systems that use machine learning have been developed, but they have some disadvantages such as requiring many calculations. In this paper, we implemented a spam message filtering system using the set-based POI search algorithm and sentence similarity without servers. This algorithm can judge whether the input query is a spam message or not using only letter composition without any server computing. Therefore, we can filter the spam message although the input text message has been intentionally modified. We added a specific preprocessing option which aims to enable spam filtering. Based on the experimental results, we observe that our spam message filtering system shows better performance than the original set-based POI search algorithm. We evaluate the proposed system through extensive simulation. According to the simulation results, the proposed system can filter the text message and show high accuracy performance against the text message which cannot be filtered by the 3 major telecom companies.

Dynamic Management of Equi-Join Results for Multi-Keyword Searches (다중 키워드 검색에 적합한 동등조인 연산 결과의 동적 관리 기법)

  • Lim, Sung-Chae
    • The KIPS Transactions:PartA
    • /
    • v.17A no.5
    • /
    • pp.229-236
    • /
    • 2010
  • With an increasing number of documents in the Internet or enterprises, it becomes crucial to efficiently support users' queries on those documents. In that situation, the full-text search technique is accepted in general, because it can answer uncontrolled ad-hoc queries by automatically indexing all the keywords found in the documents. The size of index files made for full-text searches grows with the increasing number of indexed documents, and thus the disk cost may be too large to process multi-keyword queries against those enlarged index files. To solve the problem, we propose both of the index file structure and its management scheme suitable to the processing of multi-keyword queries against a large volume of index files. For this, we adopt the structure of inverted-files, which are widely used in the multi-keyword searches, as a basic index structure and modify it to a hierarchical structure for join operations and ranking operations performed during the query processing. In order to save disk costs based on that index structure, we dynamically store in the main memory the results of join operations between two keywords, if they are highly expected to be entered in users' queries. We also do performance comparisons using a cost model of the disk to show the performance advantage of the proposed scheme.

A Study on the Korean University Students' Usage of Foreign Language Queries in Scholarly Information Retrieval (학술정보검색을 위한 국내 대학생의 외국어 탐색문 활용에 관한 연구)

  • Lee, Bo Eun;Lee, Jee Yeon
    • Journal of the Korean Society for information Management
    • /
    • v.36 no.1
    • /
    • pp.95-116
    • /
    • 2019
  • This study focused on understanding the Korean university students' (both undergraduates and graduates) use of foreign language for scholarly information retrieval especially in different search strategies employed based on users' characteristics. A new model was developed based on Ellis's behavioral model of information seeking strategies. The research applied both quantitative and qualitative methods to analyze the data. The students used a variety of foreign language information seeking strategies at different stages of academic information retrieval based on his/her field of study or level of education. The liberal arts and social science students had more difficulty in selecting proper search terms in the foreign language than the science and technology students. This difficulty resulted in less preference for using foreign language queries by the liberal arts and social science students. The students relied more on the bibliographic and citation information in scholarly information retrieval using foreign language queries than the Korean queries. The research outcomes should provide some guidelines on how the Korean university libraries offer information literacy programs and other services based on the patrons' characteristics.

Proteome Data Analysis of Hairy Root of Panax ginseng : Use of Expressed Sequence Tag Data of Ginseng for the Protein Identification (인삼 모상근 프로테옴 데이터 분석 : 인삼 EST database와의 통합 분석에 의한 단백질 동정)

  • Kwon, Kyung-Hoon;Kim, Seung-Il;Kim, Kyung-Wook;Kim, Eun-A;Cho, Kun;Kim, Jin-Young;Kim, Young-Hwan;Yang, Deok-Chun;Hur, Cheol-Goo;Yoo, Jong-Shin;Park, Young-Mok
    • Journal of Plant Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.161-170
    • /
    • 2002
  • For the hairy root of Panax ginseng, we have got mass spectrums from MALDI/TOF/MS analysis and Tandem mass spectrums from ESI/Q-TOF/MS analysis. While mass spectrum provides the molecular weights of peptide fragments digested by protease such as trypsin, tandem mass spectrum produces amino acid sequence of digested peptides. Each amino acid sequences can be a query sequence in BLAST search to identify proteins. For the specimens of animals or plants of which genome sequences were known, we can easily identify expressed proteins from mass spectrums with high accuracy. However, for the other specimens such as ginseng, it is difficult to identify proteins with accuracy since all the protein sequences are not available yet. Here we compared the mass spectrums and the peptide amino acid sequences with ginseng expressed sequence tag (EST) DB. The matched EST sequence was used as a query in BLAST search for protein identification. They could offer the correct protein information by the sequence alignment with EST sequences. 90% of peptide sequences of ESI/Q-TOF/MS are matched with EST sequences. Comparing 68% matches of the same sequences with the nr database of NCBI, we got more matches by 22% from ginseng EST sequence search. In case of peptide mass fingerprinting from MALDI/TOF/MS, only about 19% (9 proteins of 47 spots) among peptide matches from nr DB were correlated with ginseng EST DB. From these results, we suggest that amino acid sequencing using tandem mass spectrum analysis may be necessary for protein identification in ginseng proteome analysis.

A Study on Development of Patent Information Retrieval Using Textmining (텍스트 마이닝을 이용한 특허정보검색 개발에 관한 연구)

  • Go, Gwang-Su;Jung, Won-Kyo;Shin, Young-Geun;Park, Sang-Sung;Jang, Dong-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3677-3688
    • /
    • 2011
  • The patent information retrieval system can serve a variety of purposes. In general, the patent information is retrieved using limited key words. To identify earlier technology and priority rights repeated effort is needed. This study proposes a method of content-based retrieval using text mining. Using the proposed algorithm, each of the documents is invested with characteristic value. The characteristic values are used to compare similarities between query documents and database documents. Text analysis is composed of 3 steps: stop-word, keyword analysis and weighted value calculation. In the test results, the general retrieval and the proposed algorithm were compared by using accuracy measurements. As the study arranges the result documents as similarities of the query documents, the surfer can improve the efficiency by reviewing the similar documents first. Also because of being able to input the full-text of patent documents, the users unacquainted with surfing can use it easily and quickly. It can reduce the amount of displayed missing data through the use of content based retrieval instead of keyword based retrieval for extending the scope of the search.

An Index-Based Approach for Subsequence Matching Under Time Warping in Sequence Databases (시퀀스 데이터베이스에서 타임 워핑을 지원하는 효과적인 인덱스 기반 서브시퀀스 매칭)

  • Park, Sang-Hyeon;Kim, Sang-Uk;Jo, Jun-Seo;Lee, Heon-Gil
    • The KIPS Transactions:PartD
    • /
    • v.9D no.2
    • /
    • pp.173-184
    • /
    • 2002
  • This paper discuss an index-based subsequence matching that supports time warping in large sequence databases. Time warping enables finding sequences with similar patterns even when they are of different lengths. In earlier work, Kim et al. suggested an efficient method for whole matching under time warping. This method constructs a multidimensional index on a set of feature vectors, which are invariant to time warping, from data sequences. For filtering at feature space, it also applies a lower-bound function, which consistently underestimates the time warping distance as well as satisfies the triangular inequality. In this paper, we incorporate the prefix-querying approach based on sliding windows into the earlier approach. For indexing, we extract a feature vector from every subsequence inside a sliding window and construct a multidimensional index using a feature vector as indexing attributes. For query processing, we perform a series of index searches using the feature vectors of qualifying query prefixes. Our approach provides effective and scalable subsequence matching even with a large volume of a database. We also prove that our approach does not incur false dismissal. To verify the superiority of our approach, we perform extensive experiments. The results reveal that our approach achieves significant speedup with real-world S&P 500 stock data and with very large synthetic data.

Development of Workbench for Analysis and Visualization of Whole Genome Sequence (전유전체(Whole gerlome) 서열 분석과 가시화를 위한 워크벤치 개발)

  • Choe, Jeong-Hyeon;Jin, Hui-Jeong;Kim, Cheol-Min;Jang, Cheol-Hun;Jo, Hwan-Gyu
    • The KIPS Transactions:PartA
    • /
    • v.9A no.3
    • /
    • pp.387-398
    • /
    • 2002
  • As whole genome sequences of many organisms have been revealed by small-scale genome projects, the intensive research on individual genes and their functions has been performed. However on-memory algorithms are inefficient to analysis of whole genome sequences, since the size of individual whole genome is from several million base pairs to hundreds billion base pairs. In order to effectively manipulate the huge sequence data, it is necessary to use the indexed data structure for external memory. In this paper, we introduce a workbench system for analysis and visualization of whole genome sequence using string B-tree that is suitable for analysis of huge data. This system consists of two parts : analysis query part and visualization part. Query system supports various transactions such as sequence search, k-occurrence, and k-mer analysis. Visualization system helps biological scientist to easily understand whole structure and specificity by many kinds of visualization such as whole genome sequence, annotation, CGR (Chaos Game Representation), k-mer, and RWP (Random Walk Plot). One can find the relations among organisms, predict the genes in a genome, and research on the function of junk DNA using our workbench.

Design and Algorithm Implementation of a Distributed Information Retrieval System using Sequential Transferring Method(STM) (순차적 전달방식(STM)을 이용한 분산정보검색시스템의 설계 및 알고리즘 구현)

  • Yoon, Hee-Byung;Kim, Yong-Han;Kim, Hwa-Soo
    • The KIPS Transactions:PartB
    • /
    • v.11B no.5
    • /
    • pp.603-610
    • /
    • 2004
  • The distributed Information Retrieval System centrally controlled by mediator or meta search engine result in congestion of heavy traffic and int he problem of increment of cost for the reason of the design of complicated algorithm for central control and installation of hardware. So to figure out this problem, the way is needed that has independent retrieval functionality and can cooperate each other without dependency. In this paper, we overview a few works involved in distributed information retrieval system, then, implement algorithm and design the frame-work of distributed information retrieval system using sequential transferring method(STM) including multiple information retrieval system separated from central control. For this first of all, we present a web partition policy which devide and manage web logically and we present the sequential query processing way by means of illustration through changing numbered information retrieval system. Then, we also present 3-layered structure of framework and function and module of each layer suitable for information retrieval system. Last of ail, for effective implementation of STM algorithm we analysis module structure and present description of pseudocode of this, and show that the proposed STM algorithm works smoothly by demonstration of sequential query transfer process between servers.

The Ontology Based, the Movie Contents Recommendation Scheme, Using Relations of Movie Metadata (온톨로지 기반 영화 메타데이터간 연관성을 활용한 영화 추천 기법)

  • Kim, Jaeyoung;Lee, Seok-Won
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.25-44
    • /
    • 2013
  • Accessing movie contents has become easier and increased with the advent of smart TV, IPTV and web services that are able to be used to search and watch movies. In this situation, there are increasing search for preference movie contents of users. However, since the amount of provided movie contents is too large, the user needs more effort and time for searching the movie contents. Hence, there are a lot of researches for recommendations of personalized item through analysis and clustering of the user preferences and user profiles. In this study, we propose recommendation system which uses ontology based knowledge base. Our ontology can represent not only relations between metadata of movies but also relations between metadata and profile of user. The relation of each metadata can show similarity between movies. In order to build, the knowledge base our ontology model is considered two aspects which are the movie metadata model and the user model. On the part of build the movie metadata model based on ontology, we decide main metadata that are genre, actor/actress, keywords and synopsis. Those affect that users choose the interested movie. And there are demographic information of user and relation between user and movie metadata in user model. In our model, movie ontology model consists of seven concepts (Movie, Genre, Keywords, Synopsis Keywords, Character, and Person), eight attributes (title, rating, limit, description, character name, character description, person job, person name) and ten relations between concepts. For our knowledge base, we input individual data of 14,374 movies for each concept in contents ontology model. This movie metadata knowledge base is used to search the movie that is related to interesting metadata of user. And it can search the similar movie through relations between concepts. We also propose the architecture for movie recommendation. The proposed architecture consists of four components. The first component search candidate movies based the demographic information of the user. In this component, we decide the group of users according to demographic information to recommend the movie for each group and define the rule to decide the group of users. We generate the query that be used to search the candidate movie for recommendation in this component. The second component search candidate movies based user preference. When users choose the movie, users consider metadata such as genre, actor/actress, synopsis, keywords. Users input their preference and then in this component, system search the movie based on users preferences. The proposed system can search the similar movie through relation between concepts, unlike existing movie recommendation systems. Each metadata of recommended candidate movies have weight that will be used for deciding recommendation order. The third component the merges results of first component and second component. In this step, we calculate the weight of movies using the weight value of metadata for each movie. Then we sort movies order by the weight value. The fourth component analyzes result of third component, and then it decides level of the contribution of metadata. And we apply contribution weight to metadata. Finally, we use the result of this step as recommendation for users. We test the usability of the proposed scheme by using web application. We implement that web application for experimental process by using JSP, Java Script and prot$\acute{e}$g$\acute{e}$ API. In our experiment, we collect results of 20 men and woman, ranging in age from 20 to 29. And we use 7,418 movies with rating that is not fewer than 7.0. In order to experiment, we provide Top-5, Top-10 and Top-20 recommended movies to user, and then users choose interested movies. The result of experiment is that average number of to choose interested movie are 2.1 in Top-5, 3.35 in Top-10, 6.35 in Top-20. It is better than results that are yielded by for each metadata.

Job Preference Analysis and Job Matching System Development for the Middle Aged Class (중장년층 일자리 요구사항 분석 및 인력 고용 매칭 시스템 개발)

  • Kim, Seongchan;Jang, Jincheul;Kim, Seong Jung;Chin, Hyojin;Yi, Mun Yong
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.247-264
    • /
    • 2016
  • With the rapid acceleration of low-birth rate and population aging, the employment of the neglected groups of people including the middle aged class is a crucial issue in South Korea. In particular, in the 2010s, the number of the middle aged who want to find a new job after retirement age is significantly increasing with the arrival of the retirement time of the baby boom generation (born 1955-1963). Despite the importance of matching jobs to this emerging middle aged class, private job portals as well as the Korean government do not provide any online job service tailored for them. A gigantic amount of job information is available online; however, the current recruiting systems do not meet the demand of the middle aged class as their primary targets are young workers. We are in dire need of a specially designed recruiting system for the middle aged. Meanwhile, when users are searching the desired occupations on the Worknet website, provided by the Korean Ministry of Employment and Labor, users are experiencing discomfort to search for similar jobs because Worknet is providing filtered search results on the basis of exact matches of a preferred job code. Besides, according to our Worknet data analysis, only about 24% of job seekers had landed on a job position consistent with their initial preferred job code while the rest had landed on a position different from their initial preference. To improve the situation, particularly for the middle aged class, we investigate a soft job matching technique by performing the following: 1) we review a user behavior logs of Worknet, which is a public job recruiting system set up by the Korean government and point out key system design implications for the middle aged. Specifically, we analyze the job postings that include preferential tags for the middle aged in order to disclose what types of jobs are in favor of the middle aged; 2) we develope a new occupation classification scheme for the middle aged, Korea Occupation Classification for the Middle-aged (KOCM), based on the similarity between jobs by reorganizing and modifying a general occupation classification scheme. When viewed from the perspective of job placement, an occupation classification scheme is a way to connect the enterprises and job seekers and a basic mechanism for job placement. The key features of KOCM include establishing the Simple Labor category, which is the most requested category by enterprises; and 3) we design MOMA (Middle-aged Occupation Matching Algorithm), which is a hybrid job matching algorithm comprising constraint-based reasoning and case-based reasoning. MOMA incorporates KOCM to expand query to search similar jobs in the database. MOMA utilizes cosine similarity between user requirement and job posting to rank a set of postings in terms of preferred job code, salary, distance, and job type. The developed system using MOMA demonstrates about 20 times of improvement over the hard matching performance. In implementing the algorithm for a web-based application of recruiting system for the middle aged, we also considered the usability issue of making the system easier to use, which is especially important for this particular class of users. That is, we wanted to improve the usability of the system during the job search process for the middle aged users by asking to enter only a few simple and core pieces of information such as preferred job (job code), salary, and (allowable) distance to the working place, enabling the middle aged to find a job suitable to their needs efficiently. The Web site implemented with MOMA should be able to contribute to improving job search of the middle aged class. We also expect the overall approach to be applicable to other groups of people for the improvement of job matching results.