• Title/Summary/Keyword: Sea bottom

Search Result 1,181, Processing Time 0.027 seconds

Geoacoustic Model of Coastal Bottom Strata at Jeongdongjin in the Korean Continental Margin of the East Sea (동해 한국대륙주변부 정동진 연안 지층의 지음향 모델)

  • Ryang, Woo-Hun;Kim, Seong-Pil;Kim, Dae-Choul;Hahn, Jooyoung
    • Journal of the Korean earth science society
    • /
    • v.37 no.4
    • /
    • pp.200-210
    • /
    • 2016
  • Geoacoustic modeling is used to predict sound transmission through submarine bottom layers of sedimentary strata and acoustic basement. This study reconstructed four geoacoustic models for sediments of 50 m thick at the Jeongdongjin area in the western continental margin of the East Sea. Bottom models were based on the data of the highresolution air-gun seismic and subbottom profiles (SBP) with sediment cores. P-wave speed was measured by the pulse transmission technique, and the resonance frequency of piezoelectric transducers was maintained at 1MHz. Measurements of 42 P-wave speeds and 41 attenuations were fulfilled in three core sediments. For actual modeling, the P-wave speeds of the models were compensated to in situ depth below the sea floor using the Hamilton method. These geoacoustic models of coastal bottom strata will be used for geoacoustic and underwater acoustic experiments reflecting vertical and lateral variability of geoacoustic properties in the Jeongdongjin area of the East Sea.

The verification of the application of grouting in the bottom protection work of sea dikes in the field (그라우팅을 통한 방조제 바닥보호공 차수공법 현장 적용성 검증)

  • Lee, So-Yeal;Choi, Sae-Kyung;Jeong, Il-Han
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.29-39
    • /
    • 2010
  • By understanding the construction process of sea dikes and the current state of the thickness and speed of fluid in the bottom layer protection work of final closure gaps, a construction method applicable for the blocking of bottom layer work will be selected. The three construction methods selected will be tested in site through various methods, and the reinforcement of bottom layer protection and impervious effect will be verified. The verification results are as follows: 1) The overall riprap layer were 0.5~1.0m thicker than planned so that the grouting depth and grout input amount increased 2) The applied construction methods permeability of riprap layers were improved from $\alpha{\times}10^{-2}cm/s$ before the construction to $\alpha{\times}10^{-4}cm/s$ after construction. 3) The results of core extraction in order to grossly verify the hardening time and durability allowed the identification of grout injection effect. The amount of filling of the injection was difficult to judge because the slime in many areas made the reading of borehole photography difficult.

  • PDF

Responses of the Ross Sea to the Climate Change: Importance of observations in the Ross Sea, Antarctica (기후변화에 따른 남극 로스해 반응에 관한 고찰: 남극 로스해 관측의 중요성)

  • Yoon, Seung-Tae
    • Ocean and Polar Research
    • /
    • v.44 no.1
    • /
    • pp.69-82
    • /
    • 2022
  • The Ross Sea, Antarctica plays an important role in the formation of Antarctic Bottom Water (AABW) which is the densest water mass in global thermohaline circulation. Of the AABW, 25% is formed in the Ross Sea, and sea ice formation at the polynya (ice-free area) developed in front of ice shelves of the Ross Sea is considered as a pivotal mechanism for AABW production. For this reason, monitoring the Ross Sea variations is very important to understand changes of global thermohaline circulation influenced by climate change. In addition, the Ross Sea is also regarded as a natural laboratory in investigating ice-ocean interactions owing to the development of the polynya. In this article, I introduce characteristics of the Ross Sea described in previous observational studies, and investigate variations that have occurred in the Ross Sea in the past and those taking place in the present. Furthermore, based on these observational results, I outline variations or changes that can be anticipated in the Ross Sea in the future, and make an appeal to researchers regarding the importance and necessity of continuous observations in the Ross Sea.

An Evaluation on the Implementation of UNGA Resolutions in Management of Korean Deep-sea Fisheries in the High Seas (공해 저층어업 규제동향과 대응방안 분석)

  • Shin, Yong-Min
    • The Journal of Fisheries Business Administration
    • /
    • v.42 no.1
    • /
    • pp.1-18
    • /
    • 2011
  • This paper analyze a description of Korean fleet using bottom gears on the high seas. The need for this study arises from international moves to address the effects of fishing with bottom gears on vulnerable marine ecosystems (VMEs) and in view of a communication on the Korean policy in respect of this. There is growing concern over the impact of fishing using gears that come into contact with the seabed (bottom gears), in particular in deep-sea areas where vulnerable marine ecosystems including seamounts, hydrothermal vents and cold water corals are located. Korea is an important stakeholder in high seas bottom gear fisheries. For the past eight years, the issue of protecting biodiversity in the deep-sea in areas beyond national jurisdiction has been extensively debated by the United Nations General Assembly (UNGA) and in other international fora. As a result of the report and a review by the UNGA of the effectiveness of the measures called for in resolution 59/25, the UN General Assembly called for a series of specific actions to be taken by States and RFMOs in UNGA resolutions 61/105 in 2006 and 64/72 in 2009 adopted by consensus. Korea attaches great importance to the protection of marine ecosystems and has made active efforts to implement the UNGA Resolution 61/105 in areas where there is a regional fisheries management organization, a process of establishing such organization or no such multilateral regime. For the effective implementation of the UNGA Resolution 61/105 and 64/72, Korea views that the development of support tools and, most importantly, the development of a global database on VMEs are urgently needed because many countries lack the ability to identify VMEs and to assess whether individual bottom fishing activities would have significant adverse impacts on their own.

Difference of Nutrients Budgets in the Bohai Sea between 1982 and 1992 related to the Decrease of the Yellow River Discharge

  • Hayashi, Mitsuru;Yanagi, Tetsuo;Xinyu, Guo
    • Journal of the korean society of oceanography
    • /
    • v.39 no.1
    • /
    • pp.14-19
    • /
    • 2004
  • Difference of Dissolved Inorganic Phosphorus (DIP), Dissolved Inorganic Nitrogen (DIN) and Dissolved Silicate (DSi) budgets in the Bohai Sea between 1982 and 1992 related the decrease of the Yellow River discharge is discussed on the basis of observed data. The estuarine circulation in the Bohai Sea had been weakened from 1982 to 1992 due to the decrease of the Yellow River discharge and the average residence time of fresh water had become longer. DIN concentration increased but DIP and DSi concentrations decreased from 1982 to 1992 in the Bohai Sea. Primary production was regulated mainly by water temperature and DIN concentration in 1982 but it was regulated mainly by DIP concentration in 1992. Primary production was larger than decomposition plus bottom release and nitrogen fixation was larger than denitrification in 1982. However, decomposition plus bottom release was larger than primary production and denitrification was larger than nitrogen fixation in 1992 in the Bohai Sea.

Time Dependent Morphological Changes around the Closure Gap in Saemankeum (새만금 방조제 물막이 구간 주변에서의 지형변화예측(수공))

  • 박영욱;어대수;박상현
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.365-370
    • /
    • 2000
  • Sea dike construction for the tidal flat reclamation works in estuary and coast may change the characteristics of tidal motion and wave conditions in the region. In turn, a new hydraulic condition provides the impacts on sediment transport pattern and forms a new morphological environment. Also, morphological changes during the closure works of sea dike are closely related with a safy of sea dike. Therefore, the prediction of morphological changes is required secure the safe closure work and the economic design of sea dikes. To investigate morphological changes due to sea dike construction, hydrodynamic changes of tides and waves have to be evaluated, then sediment transport and sea bottom changes are computed. Mathematical modelling is required for representation of interrelation of tidal motion, wave and sediment transport. In this study, numerical model MORSYS is applied to compute the hydrodynamics and morphological changes around the closure gap for Saemankuem dike. This model allows a flexible integration of the module for waves, currents, sediment transport and bottom changes.

  • PDF

Relationship between the Distribution of Water Masses and that of Demersal Fishes in the East China Sea in Spring

  • Cho Kyu Dae;Kim Hee Yong
    • Fisheries and Aquatic Sciences
    • /
    • v.3 no.1
    • /
    • pp.14-22
    • /
    • 2000
  • The relationship between the distribution of demersal fishes and that of the water masses was examined by using the catches data and hydrographic data in the Yellow Sea and the East China Sea on May 13-19, 1996 and May 10-17, 1997. During the study period, the dominant fish species were Cleisthenes pinetorum herzinsteini, Lophiomus setigerus and Pseudosciaena polyactis. These three low temperature water species accounted for $21-24\%$ of the total catches. The percentage of the low temperature water species was high in the Yellow Sea and the coastal area on the continental shelf of the East China Sea but was low in the vincinity of Kyushu during the study period. In the East China Sea, the isotherm of $15^{\circ}C$ at 50m, mid layer depth, was located more southeast in 1996 than in 1997. The bottom water temperature was about it lower in 1996 than in 1997. The direction of the detided current on the continental shelf of the East China Sea was southward in 1996 and northward in 1997. Yellow Sea Bottom Cold Water (YSBCW) strongly expanded to south in 1996 when the northward current was weak. But, Tsushima Warm Current (TSWC) strongly intruded into the continental shelf of the East China Sea in 1997. As YSBCW expanded strongly to south in 1996, the percentage of the low temperature water species relative to the total catches was high. But, TSWC strongly intruded and the percentage of low temperature water fishes was low in 1997.

  • PDF

DISTRIBUTION CHARACTERISTICS AND AFFECTING FACTORS OF SPRING HETEROTROPHIC BACTERIA IN BOHAI SEA

  • Bai, Jie;Li, Kuiran;Li, Zhengyan;Gao, Huiwang;Wu, Zengmao
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2001.11a
    • /
    • pp.6-10
    • /
    • 2001
  • Distribution characteristics, variation patterns and affecting factors of hetorotrophic bacteria were studied from April to May 1999 in Bohai Sea by standard Acridine Orange epifluorescence microscopy (AO method). The biomass in surface waters showed a small day-night variation, varying from 0.13-2.51$\mu\textrm{m}$$.$dm$\^$-3/ with an average of 0.84 $\mu\textrm{m}$$.$dm$\^$-3/. The biomass in bottom waters showed, however, a large variation, changing from 0.15-4.18 $\mu\textrm{m}$$.$dm$\^$-3/ with an average of 1.36 $\mu\textrm{m}$$.$dm$\^$-3/. The peak values were obtained at 5 and 11 am. The bottom water biomass showed a significant correlation with particulate organic carbon (r=0.639, p<0.05). Heterotrophic bacteria showed high biomass in nearshore waters and low values in offshore areas with a high biomass zone around Yellow Sea river mouth, which was consistent with the distribution of nutrients. The vertical distribution of heterotrophic bacteria showed biomass in bottom waters was higher than in surface water. The biomass of heterotrophic bacteria in Bohai Sea was similar with that in other marine waters.

  • PDF

Hydraulic behavior of a subsea tunnel in a ground with fractured-zones (파쇄대를 통과하는 해저터널의 수리거동에 관한 연구)

  • Shin, Jong-Ho;Choi, Kyu-Cheol
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1571-1580
    • /
    • 2008
  • Subsea tunnels that link land to island and among nations for transportation, efficient development of limited surface and pursuit of economic development should be designed to support pore water pressure on the lining. It is generally constructed in the bed rock of the sea bottom. When the tunnel excavation face meets fractured-zones below sea bottom, collapse may occur due to an increase of pore water pressure and large inflow. Such an example can be found in the Norwegian subsea tunnel experiences in 1980's. In this study hydraulic behavior of tunnel heading is investigated using numerical method based on the collapse of Norwegian subsea tunnel. The effect of pore water pressure and inflow rate were mainly concerned. Horse-shoe shaped model tunnel which has 50 m depth from the sea bottom is considered. To evaluate hydraulic performance, parametric study was carried out for varying relative permeability. It is revealed that pore water pressure has increased with an increase of sea depth. Especially, at the fractured-zone, pore water pressure on the lining has increased significantly. Inflow rate into tunnel has also increased correspondingly with an increase in sea depth. S-shaped characteristic relation between relative permeability and normalized pore water pressure was obtained.

  • PDF

Changes in Sea Bottom Topology with Saemangeurn Project (새만금사업에 따른 해저 지형변화)

  • Choi, Jin-Kyu;Son, Jae-Gwon;Kim, Jeong-Gyun;Song, Ki-Il
    • Journal of Korean Society of Rural Planning
    • /
    • v.8 no.2 s.16
    • /
    • pp.17-26
    • /
    • 2002
  • The purpose of this study was to investigate the changes of the sea bottom topology during construction of Saemangeum seadikes. Sea water depth and bottom topology in the Saemangeum area were measured every year and the surveyed data under construction of Saemangeum seadikes were analyzed and compared to the initial conditions before construction, There was erosion in the overall surveyed areas and the depth of erosion was approximately 53cm compared to the data in 1988. The center sandbanks of Seadike 2 did not show the great changes due to two main channels those were developed in northeast and southeast. The inland sandbanks of Seadike 4 showed the development of great erosion and deposition partially because of the changes in tide direction which developed as a result of the completion of Seadike 3 and the completion of a seadike of the Kunsan-Changhang industrial park at the north of Saemangeumm area.