DOI QR코드

DOI QR Code

Responses of the Ross Sea to the Climate Change: Importance of observations in the Ross Sea, Antarctica

기후변화에 따른 남극 로스해 반응에 관한 고찰: 남극 로스해 관측의 중요성

  • Yoon, Seung-Tae (School of Earth System Sciences, College of Natural Sciences, Kyungpook National University)
  • 윤승태 (경북대학교 자연과학대학 지구시스템과학부)
  • Received : 2021.11.12
  • Accepted : 2022.01.27
  • Published : 2022.03.30

Abstract

The Ross Sea, Antarctica plays an important role in the formation of Antarctic Bottom Water (AABW) which is the densest water mass in global thermohaline circulation. Of the AABW, 25% is formed in the Ross Sea, and sea ice formation at the polynya (ice-free area) developed in front of ice shelves of the Ross Sea is considered as a pivotal mechanism for AABW production. For this reason, monitoring the Ross Sea variations is very important to understand changes of global thermohaline circulation influenced by climate change. In addition, the Ross Sea is also regarded as a natural laboratory in investigating ice-ocean interactions owing to the development of the polynya. In this article, I introduce characteristics of the Ross Sea described in previous observational studies, and investigate variations that have occurred in the Ross Sea in the past and those taking place in the present. Furthermore, based on these observational results, I outline variations or changes that can be anticipated in the Ross Sea in the future, and make an appeal to researchers regarding the importance and necessity of continuous observations in the Ross Sea.

Keywords

Acknowledgement

이 논문은 2021학년도 경북대학교 신임교수정착연구비에 의하여 연구되었습니다.

References

  1. Assmann KM, Timmermann R (2005) Variability of dense water formation in the Ross Sea. Ocean Dynam 55(2):68-87 https://doi.org/10.1007/s10236-004-0106-7
  2. Barker PF, Filippelli GM, Florindo F, Martin EE, Scher HD (2007) Onset and role of the Antarctic Circumpolar Current. Deep-Sea Res Pt II 54(21-22):2388-2398 https://doi.org/10.1016/j.dsr2.2007.07.028
  3. Bromwich D, Liu Z, Rogers AN, Van Woert ML (1998) Winter Atmospheric forcing of the Ross Sea polynya. Antar Res S 75:101-133
  4. Budillon G, Cordero SG, Salusti E (2002) On the dense water spreading off the Ross Sea shelf (Southern Ocean). J Mar Syst 35:207-227 https://doi.org/10.1016/S0924-7963(02)00082-9
  5. Budillon G, Castagno P, Aliani S, Spezie G, Padman L (2011) Thermohaline variability and Antarctic bottom water formation at the Ross Sea shelf break. Deep-Sea Res Pt I 58(10):1002-1018 https://doi.org/10.1016/j.dsr.2011.07.002
  6. Castagno P, Fal co P, Dinniman MS, Spezie G, Budil l on G (2017) Temporal variability of the Circumpolar Deep Water infl ow onto the Ross Sea continental shel f. J Mar Syst 166:37-49 https://doi.org/10.1016/j.jmarsys.2016.05.006
  7. Castagno P, Capozzi V, DiTullio GR, Falco P, Fusco G, Rintoul SR, Spezie G, Budillon G (2019) Rebound of shelf water salinity in the Ross Sea. Nat Commun 10(1):5441 https://doi.org/10.1038/s41467-019-13083-8
  8. Cavalieri DJ, Parkinson CL, Gloersen P, Zwally HJ (1996) Sea ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS passive microwave data, Version 1(updated yearly). NASA National Snow and Ice Data Center Distributed Active Archive Center. https://nsidc.org/data/NSIDC0051/versions/1 Accessed 15 Oct 2021
  9. Cheon WG, Gordon AL (2019) Open-ocean polynyas and deep convection in the Southern Ocean. Sci Rep 9(1):6935 https://doi.org/10.1038/s41598-019-43466-2
  10. Chu PC, Fan C (2007) An inverse model for calculation of global volume transport from wind and hydrographic data. J Mar Syst 65(1-4):376-399 https://doi.org/10.1016/j.jmarsys.2005.06.010
  11. Ciappa A, Pietranera L, Budillon G (2012) Observations of the Terra Nova Bay (Antarctica) polynya by MODIS ice surface temperature imagery from 2005 to 2010. Remote Sens Environ 119:158-172 https://doi.org/10.1016/j.rse.2011.12.017
  12. Cincinelli A, Martellini T, Bittoni L, Russo A, Gambaro A, Lepri L (2008) Natural and anthropogenic hydrocarbons in the water column of the Ross Sea (Antarctica). J Mar Syst 73(1-2):208-220 https://doi.org/10.1016/j.jmarsys.2007.10.010
  13. Daae K Daae K, Hattermann T, Darelius E, Mueller RD, Naughten KA, Timmermann R, Hellmer HH (2020) Necessary conditions for warm inflow toward the filchner ice shelf, Weddell Sea. Geophys Res Lett 47(22):1-11
  14. Dotto T, Naveira Garabato AC, Bacon S, Tsamados M, Holland PR, Hooley J, Frajka-Williams E, Ridout A, Meredith MP (2018) Variability of the Ross Gyre, southern ocean: Drivers and Responses Revealed by satellite altimetry. Geophys Res Lett 45:6195-6204
  15. Fusco G, Budillon G, Spezie G (2009) Surface heat fluxes and thermohaline variability in the Ross Sea and in Terra Nova Bay polynya. Cont Shelf Res 29(15):1887-1895 https://doi.org/10.1016/j.csr.2009.07.006
  16. Fyfe JC, Saenko OA, Zickfeld K, Eby M, Weaver AJ (2007) The role of poleward-intensifying winds on Southern Ocean Warming. J Climate 20(21):5391-5400 https://doi.org/10.1175/2007JCLI1764.1
  17. Jacobs SS, Giulivi CF (2010). Large multidecadal salinity trends near the Pacific-Antarctic continental margin. J Climate 23(17):4508-4524 https://doi.org/10.1175/2010JCLI3284.1
  18. Gong D, Wang S (1999) Definition of antarctic oscillation index. Geophys Res Lett 26(4):459-462 https://doi.org/10.1029/1999GL900003
  19. Gordon AL, Orsi AH, Muench R, Huber BA, Zambianchi E, Visbeck M (2009) Western Ross Sea continental slope gravity currents. Deep-Sea Res Pt II 56(13-14):796-817 https://doi.org/10.1016/j.dsr2.2008.10.037
  20. Goyal R, Gupta AS, Jucker M, England MH (2021) Historical and projected changes in the Southern Hemisphere surface westerl ies. Geophys Res Lett 48:1-13
  21. Hall A, Visbeck M (2002) Synchronous variability in the Southern Hemisphere Atmosphere, Sea ice, and ocean resulting from the annul ar mode. J Cl imate 15:3043-3057 https://doi.org/10.1175/1520-0442(2002)015<3043:SVITSH>2.0.CO;2
  22. Hellmer HH, Kauker F, Timmermann R, Determann J, Rae J (2012) Twenty-first-century warming of a large Antarctic ice-shelf cavity by a redirected coastal current. Nature 485(7397):225-228 https://doi.org/10.1038/nature11064
  23. Hellmer HH, Kauker F, Timmermann R, Hattermann T (2017) The fate of the Southern Weddell Sea continental shelf in a warming climate. J Climate 30(12):4337-4350 https://doi.org/10.1175/JCLI-D-16-0420.1
  24. Holland DM (2001) Explaining the Weddell polynya - a large ocean eddy shed at Maud Rise. Science 292:1697-1700 https://doi.org/10.1126/science.1059322
  25. Holland DM, Nicholls KW, Basinski A (2020) The Southern Ocean and its interaction with the Antarctic ice sheet. Science 367:1326-1330 https://doi.org/10.1126/science.aaz5491
  26. Jackett DR, McDougall TJ (1997) A neutral density variable for the world's oceans. J Phys Oceanogr 27:237-263 https://doi.org/10.1175/1520-0485(1997)027<0237:ANDVFT>2.0.CO;2
  27. Jacobs SS (2004) Bottom water production and its links with the thermohaline circulation. Antarct Sci 16(4):427-437 https://doi.org/10.1017/S095410200400224X
  28. Jacbos SS, Giulivi CF, Mele PA (2002) Freshening of the Ross Sea during the late 20th century. Science 297(5580):386-389 https://doi.org/10.1126/science.1069574
  29. Jendersie S, Williams MJM, Langhorne PJ, Robertson R (2018) The density-driven winter intensification of the Ross Sea circulation. J Geophys Res-Oceans 123(11):7702-7724 https://doi.org/10.1029/2018JC013965
  30. Jenkins A, Dutrieux P, Jacobs SS, Steig EJ, Gudmundsson GH, Simth J, Heywood KJ (2016) Decadal ocean forcing and Antarctic ice sheet response: lessons from the Amundsen Sea. Oceanography 29(4):106-117 https://doi.org/10.5670/oceanog.2016.103
  31. Johnson GC (2008) Quantifying Antarctic Bottom Water and North Atlantic deep water volumes. J Geophys Res 113(C5):C05027. doi:10.1029/2007JC004477
  32. Kurtz DD, Bromwich DH (1985) A recurring, atmospherically forced polynya in Terra Nova Bay. Antar Res S 43:177-201 https://doi.org/10.1029/AR043p0177
  33. Malyarenko A, Robinson NJ, Williams MJM, Langhorne PJ (2019). A wedge mechanism for summer surface water inflow into the Ross ice shelf cavity. J Geophys Res-Oceans 124(2):1196-1214 https://doi.org/10.1029/2018JC014594
  34. Marshall GJ (2003) Trends in the Southern annular mode from observations and reanalyses. J Climate 16:4134-4143 https://doi.org/10.1175/1520-0442(2003)016<4134:TITSAM>2.0.CO;2
  35. Mathiot P, Jourdain NC, Barnier B, Gallee H, Molines JM, Le Sommer J, Penduff T (2012) Sensitivity of coastal polynyas and high-salinity shelf water production in the Ross Sea, Antarctica, to the atmospheric forcing. Ocean Dynam 62(5):701-723 https://doi.org/10.1007/s10236-012-0531-y
  36. Mazloff MR, Heimbach P, Wunsch C (2010) An eddy-permitting southern ocean state estimate. J Phys Oceanogr 40(5):880-899 https://doi.org/10.1175/2009JPO4236.1
  37. Morales Maqueda MA (2004) Polynya dynamics: a review of observations and modeling. Rev Geophys 42(1):1-37 https://doi.org/10.1029/2002RG000116
  38. Moreno PI, Vilanova I, Villa-Martinez R, Bunbar RB, Mucciarone DA, Kaplan MR, Garreaud RD, Rojas M, Moy CM, De Pol-Holz R, Lamber F (2018) Onset and evolution of Southern Annular Mode-like changes at centennial timescale. Sci Rep 8:3458 https://doi.org/10.1038/s41598-018-21836-6
  39. Nakayama Y, Timmermann R, Rodehacke CB, Schroder M, Hellmer HH (2014) Modeling the spreading of glacial meltwater from the Amundsen and Bellingshausen Seas. Geophys Res Lett 41(22):7942-7949 https://doi.org/10.1002/2014GL061600
  40. Naughten KA, De Rydt J, Rosier SHR, Jenkins A, Hol l and PR, Ridley JK (2021) Two-timescale response of a large Antarctic ice shelf to climate change. Nat Commun 12(1):1991 https://doi.org/10.1038/s41467-021-22259-0
  41. Nicholls KW, Osterhus S, Makinson K, Gammelsrod T, Fahrbach E (2009) Ice-ocean processes over the continental shelf of the southern Weddell Sea, Antarctica: a review. Rev Geophys 47(3):1-23
  42. Orsi AH, Smethie Jr WM, Bullister JL (2002) On the total input of Antarctic waters to the deep ocean: a preliminary estimate from chlorofluorocarbon measurements. J Geophys Res 107(C8):3122. doi:10.1029/2001JC000976
  43. Orsi AH, Johnson GC, Bullister JL (1999) Circulation, mixing, and production of Antarctic Bottom Water. Prog Oceanogr 43:55-109 https://doi.org/10.1016/S0079-6611(99)00004-X
  44. Orsi AH, Jacobs SS, Gordon AL, Visbeck M (2001) Cooling and ventilating the Abyssal Ocean. Geophys Res Lett 28(15):2923-2926 https://doi.org/10.1029/2001GL012830
  45. Orsi AH, Wiederwohl CL (2009) A recount of Ross Sea waters. Deep-Sea Res Pt II 56(13-14):778-795 https://doi.org/10.1016/j.dsr2.2008.10.033
  46. Pinones A, Hofmann EE, Costa DP, Goetz K, Burns JM, Roquet F, Dinnimann MS, Klinck JM (2019) Hydrographic variability along the inner and mid-shelf region of the western Ross Sea obtained using instrumented seals. Prog Oceanogr 174:131-142 https://doi.org/10.1016/j.pocean.2019.01.003
  47. Purkey SG, Johnson GC (2013) Antarctic bottom water warming and freshening: contributions to sea level rise, ocean freshwater budgets, and global heat gain. J Climate 26(16):6105-6122 https://doi.org/10.1175/JCLI-D-12-00834.1
  48. Rignot E, Jacobs SS, Mouginot J, Scheuchl B (2013) Ice-shelf melting around Antarctica. Science 341(6143):266-270 https://doi.org/10.1126/science.1235798
  49. Rignot E, Mouginot J, Morlighem M, Seroussi H, Scheuchl B (2014) Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophys Res Lett 41(10):3502-3509 https://doi.org/10.1002/2014GL060140
  50. Rintoul SR (2018) The global influence of localized dynamics in the Southern Ocean. Nature 558(7709):209-218 https://doi.org/10.1038/s41586-018-0182-3
  51. Robinson NJ, Williams MJM, Stevens CL, Langhorne PJ, Haskell TG (2014) Evolution of a supercooled Ice Shelf Water plume with an actively growing subice platelet matrix. J Geophys Res-Oceans 119(6):3425-3446 https://doi.org/10.1002/2013JC009399
  52. Rusciano E, Budillon G, Fusco G, Spezie G (2013) Evidence of atmosphere-sea ice-ocean coupling in the Terra Nova Bay polynya (Ross Sea-Antarctica). Cont Shelf Res 61-62:112-124 https://doi.org/10.1016/j.csr.2013.04.002
  53. Rye CD, Naveira Garabato AC, Holland PR, Meredith MP, Nurser AJG, Hughes CW, Coward AC, Webb DJ (2014) Rapid sea-level rise along the Antarctic margins in response to increased glacial discharge. Nat Geosci 7(10):732-735 https://doi.org/10.1038/ngeo2230
  54. Silvano A, Foppert A, Rintoul SR, Holland PR, Tamura T, Kimura N, Castagno P, Falco P, Budillon G, Haumann FA, Naveira Garabato AC, Macdonald AM (2020) Recent recovery of Antarctic bottom water formation in the Ross Sea driven by climate anomalies. Nat Geosci 13(12):780-786 https://doi.org/10.1038/s41561-020-00655-3
  55. Stevens CL, Lee WS, Fusco G, Yun S, Grant B, Robinson N, Hwang CY (2017) The influence of the Drygalski Ice Tongue on the local ocean. Ann Glaciol 58(74):51-59 https://doi.org/10.1017/aog.2017.4
  56. Stevens CL, Hulbe C, Brewer M, Stewart C, Robinson N, Ohneiser C, Jendersie S (2020) Ocean mixing and heat transport processes observed under the Ross Ice Shelf control its basal melting. Proc Natl Acad Sci 117(29):16799-16804 https://doi.org/10.1073/pnas.1910760117
  57. Stuecker MF, Bitz CM, Armour KC (2017) Conditions leading to the unprecedented low Antarctic sea ice extent during the 2016 austral spring season. Geophys Res Lett 44(17):9008-9019 https://doi.org/10.1002/2017GL074691
  58. Talley LD, Pickard GL, Emery WJ, Swift JH (2011) Descriptive physical oceanography. Elsevier, London, 543 p
  59. Tamura T, Ohshima KI, Fraser AD, Williams GD (2016) Sea ice production variability in Antarctic coastal polynyas. J Geophys Res-Oceans 121(5):2967-2979 https://doi.org/10.1002/2015JC011537
  60. Thoma M, Jenkins A, Holland D, Jacobs SS (2008) Modelling circumpolar deep water intrusions on the Amundsen Sea continental shelf, Antarctica. Geophys Res Lett 35:1-6
  61. Thomas G, Purkey SG, Roemmich D, Foppert A, Rintoul SR (2020) Spatial variability of antarctic bottom water in the Australian Antarctic Basin from 2018-2020 captured by Deep Argo. Geophys Res Lett 47(23):1-9
  62. Thompson DWJ, Wallace JM (2000) Annular modes in the extratropical circulation. Part I: Month-to-month variability. J Climate 13:1000-1016 https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2
  63. Thompson DWJ, Wallace JM, Hegerl GC (2000) Annular modes in the extratropical circul ation. Part II: Trends. J Climate 13:1018-1036 https://doi.org/10.1175/1520-0442(2000)013<1018:AMITEC>2.0.CO;2
  64. Thompson L, Smith M, Thomson J, Stammerjohn S, Ackley S, Loose B (2020) Frazil ice growth and production during katabatic wind events in the Ross Sea, Antarctica. Cryosphere 14(10):3329-3347 https://doi.org/10.5194/tc-14-3329-2020
  65. Tinto KJ, Padman L, Siddoway CS, Springer SR, Fricker HA, Das I, Caratori Tontini F, Porter DF, Frearson NP, Howard SL, Siegfried MR, Mosbeux C, Becker MK, Bertinato C, Boghosian A, Brady N, Burton BL, Chu W, Cordero SI, Dhakal T, Dong L, Gustafson CD, Keeshin S, Locke C, Lockett A, O'Brien G, Spergel JJ, Starke SE, Tankersley M, Wearing MG, Bell RE (2019) Ross ice shelf response to climate driven by the tectonic imprint on seafloor bathymetry. Nat Geosci 12(6):441-449 https://doi.org/10.1038/s41561-019-0370-2
  66. Turner J, Comiso JC, Marshall GJ, Lachlan-Cope TA, Bracegirdle T, Maksym T, Meredith MP, Wang Z, Orr A (2009) Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. Geophys Res Lett 36:1-5
  67. Turner J, Phillips T, Marchall GJ, Hosking JS, Pope JO, Bracegirdle TJ, Deb P (2017) Unprecedented springtime retreat of Antarctic sea ice in 2016. Geophys Res Lett 44(13):6868-6875 https://doi.org/10.1002/2017GL073656
  68. Ushio S, Wakatsuchi M (1993) A laboratory study on super-cooling and frazil ice production processes in winter coastal polynyas. J Geophys Res 98(C11):20,321-20,328. doi:10.1029/93JC01905
  69. Van Woert ML (1999) Wintertime dynamics of the Terra Nova Bay polynya. J Geophys Res-Oceans 104(C4):7753-7769 https://doi.org/10.1029/1999JC900003
  70. Van Woert ML, Meier WN, Zou C-Z, Archer A, Pellegrini A, Grigioni P, Bertoia C (2001) Satellite observations of upper-ocean currents in Terra Nova Bay, Antarctica. Ann Glaciol 33:407-412 https://doi.org/10.3189/172756401781818879
  71. Van Woert ML, Johnson ES, Langone L, Worthen DL, Monaghan A, Bromwich DH, Meloni R, Dunbar RB (2003) The Ross Sea circulation during the 1990s. Antar Res S 78:5-34 https://doi.org/10.1029/078ARS02
  72. Whitworth III T, Orsi AH, Kim S-J, Nowlin Jr WD, Locarnini RA (1998) Water masses and mixing near the Antarctic slope front. Antar Res S 75:1-27
  73. Williams GD, Aoki S, Jacobs SS, Rintoul SR, Tamura T, Bindoff NL (2010) Antarctic Bottom Water from the Adelie and George V Land coast, East Antarctica (140-149°E). J Geophys Res 115(C4):1-29
  74. Yoon S-T, Lee WS, Stevens CL, Jendersie S, Nam S, Yun S, Hwang CY, Jang GI, Lee J (2020) Variability in highsalinity shelf water production in the Terra Nova Bay polynya, Antarctica. Ocean Sci 16(2):373-388 https://doi.org/10.5194/os-16-373-2020
  75. Yuan X, Martinson DG (2001) The Antarctic dipole and its predictability. Geophys Res Lett 28(18):3609-3612 https://doi.org/10.1029/2001GL012969