• Title/Summary/Keyword: Sea Surface

Search Result 3,069, Processing Time 0.024 seconds

A Study on the Structure Characteristics of Planting Ground in Incheon International Airport, Korea (인천국제공항 식재기반 구조 및 토양특성 연구)

  • Lee, Seung-Won;Han, Bong-Ho;Lee, Kyong-Jae;Kwak, Jeong-In;Yeum, Jung-Hun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.3
    • /
    • pp.77-91
    • /
    • 2015
  • This study aims to suggest adequate soil management through the analysis of physicochemical properties of soil in the planting grounds of Incheon International Airport, which was constructed on a massive land reclamation site. Study areas were 5 sites at the international business complex, the passenger terminal, the airport support complex, the free trade zone, and the access road. Soil profile analysis showed that 9 plots out of the 27 plots were hardpan and heterospere within 80cm from the soil surface. The earth laid on the ground was categorized as gravel based soil(4 plots), dredged soil from the sea bottom and mixed reclamation materials(2 plots), clay with poor permeability(3 plots) and waste construction material(1 plot). Average soil hardness was $11.5kg/cm^2$ and soil textures were sandy soil, sandy loam and loamy sand. Average soil pH was 6.7 and average organic matter content was 0.7%. Electrical conductivity was 0.0dS/m and exchangeable cation concentrations were $Ca^{2+}$ 3.4cmol/kg, $Mg^{2+}$ 1.5cmol/kg, $K^+$ 0.3cmol/kg and $Na^+$ 1.0cmol/kg. Average cation exchange capacity was 11.0cmol/kg. Although average figures in Solum mostly meet the landscape design criteria, properties of each soil layer showed various values sometimes over the limit. Base saturations were $Ca^{2+}$ 29.9%, $Mg^{2+}$ 13.3% and $K^+$ 3.7% for lower soil, $Ca^{2+}$ 33.3%, $Mg^{2+}$ 17.0% and $K^+$ 2.7% for mid-soil and $Ca^{2+}$ 32.6%, $Mg^{2+}$ 12.2% and $K^+$ 1.9% for upper soil. Exchangeable sodium percentages were 16.4% for lower soil, 7.5% for mid-soil and 4.7% upper soil. Sodium adsorption rates were 0.8 for lower soil, 0.3 for mid-soil and 0.2 for upper soil. Factors affecting to the vegetation growth were heterogeneity and poorness of solum, disturbance of dredged soils, high soil hardness including hardpan in the subsurface soil layer and shallow effective soil depth, high soil acidity, imbalance of base contents, low organic matter content and low available phosphate levels in the soil.

Analysis of Environmental Factors Related to Seasonal Variation of Bacteria and Heterotrophic Nanoflagellate in Kyeonggi Bay, Korea (경기만에서 박테리아와 종속영양편모류의 계절변화에 미치는 환경요인 분석)

  • Baek, Seung Ho;You, Kai;Han, Myung-Soo
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.2
    • /
    • pp.198-206
    • /
    • 2017
  • From June 2007 to May 2008, seasonal variations of bacterial abundance and heterotrophic nanoflagellate (HNF), together with environmental factors, were investigated at weekly and monthly intervals in Kyeonggi Bay. During the study period, the water temperature and salinity varied from $1.9^{\circ}C{\sim}29.0^{\circ}C$ and 31~35.1 psu, respectively. The concentration of ammonia, nitrate+nitrite, phosphate, and silicate ranged from 0.01 to $3.22{\mu}M$, 2.03 to $15.34{\mu}M$, 0.06 to $1.82{\mu}M$, and 0.03 to $18.3{\mu}M$, respectively. The annual average concentration of Chl. a varied from $0.86{\mu}g\;L^{-1}$ to $37.70{\mu}g\;L^{-1}$; the concentration was twice as much at the surface than at the deeper layers. The abundance of bacteria and HNF ranged from $0.29{\times}10^6$ to $7.62{\times}10^6cells\;mL^{-1}$ and $1.00{\times}10^2$ to $1.26{\times}10^3cells\;mL^{-1}$, respectively. In particular, there were significant correlations between bacteria and HNF abundance (p<0.05), and then the high abundance of HNF was frequently observed with an increase of bacterial abundance in summer (p<0.001). Our results therefore indicate that bacterial abundance in the bay was mainly controlled by resources supplied as organic and inorganic substances from Lake Shihwa due to the daily water exchange after dike construction. Also, the bacterial abundance was significantly controlled by HNF grazing pressure (top-down) in the warm seasons, i.e. excluding winter, in the Kyeonggi Bay.

The 2009-based detailed distribution pattern and area of Phragmites communis-dominant and Suaeda japonica-dominant communities on the Suncheon-bay and Beolgyo estuarine wetlands (순천만과 벌교 하구 연안습지의 2009년 기준 갈대 및 칠면초 우세 군집 분포양상과 면적 제시)

  • Hong, Seok Hwi;Chun, Seung Soo;Eom, Jin Ah
    • Journal of Wetlands Research
    • /
    • v.17 no.1
    • /
    • pp.26-37
    • /
    • 2015
  • Halophyte distribution pattern and area in the Suncheon-bay and Beolgyo estuary coastal wetlands were analyzed using KOMPSAT-2 landsat images were taken in 2008 and 2009, and field investigations were fulfilled for confirming the precise boundaries of individual halophyte areas. The salt-marsh vegetation in those areas can be classified mainly into two dominant communities: Suaeda japonica-dominant and Phragmites communis-dominant communities. In order to identify sedimentary characteristics, tidal-flat surface leveling and sedimentary facies analysis had been conducted. The sedimentary facies of marsh area are mostly silty clayey and clay facies with a little seasonal change and its slope is very gentle (0.0007~0.002 in gradient). Phragmites communis and Suaeda japonica communities were distributed in the mud-flat zone between 0.7 m and 1.8 m higher than MSL (mean sea level): zone of 1.1~1.8 m in the former and zone of 0.7~1.3 m in the latter. In the Suncheon-bay estuarine wetland, on the basis of 2009 distribution, Phragmites communis-dominant and Suaeda japonica-dominant communities are about $0.79km^2$ and $0.22km^2$ in distribution area, respectively. On the other hand, Bulgyo estuarine marsh shows that the distribution areas of Phragmites communis-dominant and Suaeda japonica-dominant communities are about $0.31km^2$ and 0.031km2 in distribution area, respectively. Individual 105 and 60 dominant community areas and their distribution patterns can be well defined and indicated in the Suncheon-bay and Bulgyo estuarine marshes, respectively. The distribution pattern and area of hylophyte communities analyzed in this study based on 2008/2009 satellite images would be valuable as a base of future monitoring of salt-marsh related studies in the study area which is the most important salt-marsh research site in Korea.

Comparison of Landcover Map Accuracy Using High Resolution Satellite Imagery (고해상도 위성영상의 토지피복분류와 정확도 비교 연구)

  • Oh, Che-Young;Park, So-Young;Kim, Hyung-Seok;Lee, Yanng-Won;Choi, Chul-Uong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.1
    • /
    • pp.89-100
    • /
    • 2010
  • The aim of this study is to produce land cover maps using satellite imagery with various degrees of high resolution and then compare the accuracy of the image types and categories. For the land cover map produced on a small-scale classification the estuary area around the Nakdong river, including an urban area, farming land and waters, was selected. The images were classified by analyzing the aerial photos taken from KOMPSAT2, Quickbird and IKONOS satellites, which all have a resolution of over 1m to the naked eye. Once all of the land cover maps with different images and land cover categories had been produced they were compared to each other. Results show that image accuracy from the aerial photos and Quickbird was relatively higher than with KOMPSAT2 and IKONOS. The agreement ratio for the large-scale classification across the classification methods ranged between 0.934 and 0.956 for most cases. The Kappa value ranged between 0.905 and 0.937; the agreement ratio for the middle-scale classification was 0.888~0.913 and the Kappa value was 0.872~0.901. The agreement ratio for the small-scale classification was 0.833~0.901 and the Kappa value was 0.813~0.888. In addition, in terms of the degree of confusion occurrence across the images, there was confusion on the urbanized arid areas and empty land in the large-scale classification. For the middle-scale classification, the confusion mainly occurred on the rice paddies, fields, house cultivating area and artificial grassland. For the small-scale classification, confusion mainly occurred on natural green fields, cultivating land with facilities, tideland and the surface of the sea. The findings of this study indicate that the classification of the high resolution images with the naked eye showed an agreement ratio of over 80%, which means that it can be used in practice. The findings also suggest that the use of higher resolution images can lead to increased accuracy in classification, indicating that the time when the images are taken is important in producing land cover maps.

Analysis of Optical Characteristic Near the Cloud Base of Before Precipitation Over the Yeongdong Region in Winter (영동지역 겨울철 스캔라이다로 관측된 강수 이전 운저 인근 수상체의 광학 특성 분석)

  • Nam, Hyoung-Gu;Kim, Yoo-Jun;Kim, Seon-Jeong;Lee, Jin-Hwa;Kim, Geon-Tea;An, Bo-Yeong;Shim, Jae-Kwan;Jeon, Gye-hak;Choi, Byoung-Choel;Kim, Byung-Gon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.237-248
    • /
    • 2018
  • The vertical distribution of hydrometeor before precipitation near the cloud base has been analyzed using a scanning lidar, rawinsonde data, and Cloud-Resolving Storm Simulator (CReSS). This study mostly focuses on 13 Desember 2016 only. The typical synoptic pattern of lake-effect snowstorm induced easterly in the Yeongdong region. Clouds generated due to high temperature difference between 850 hPa and sea surface (SST) penentrated in the Yeongdong region along with northerly and northeasterly, which eventually resulted precipitation. The cloud base height before the precipitation changed from 750 m to 1,280 m, which was in agreement with that from ceilometer at Sokcho. However, ceilometer tended to detect the cloud base 50 m ~ 100 m below strong signal of lidar backscattering coefficient. As a result, the depolarization ratio increased vertically while the backscattering coefficient decreased about 1,010 m~1,200 m above the ground. Lidar signal might be interpreted to be attenuated with the penetration depth of the cloud layer with of nonspherical hydrometeor (snow, ice cloud). An increase in backscattering signal and a decrease in depolarization ratio occured in the layer of 800 to 1,010 m, probably being associated with an increase in non-spherical particles. There seemed to be a shallow liquid layer with a low depolarization ratio (<0.1) in the layer of 850~900 m. As the altitude increases in the 680 m~850 m, the backscattering coefficient and depolarization ratio increase at the same time. In this range of height, the maximum value (0.6) is displayed. Such a result can be inferred that the nonspherical hydrometeor are distributed by a low density. At this time, the depolarization ratio and the backscattering coefficient did not increase under observed melting layer of 680 m. The lidar has a disadvantage that it is difficult for its beam to penetrate deep into clouds due to attenuation problem. However it is promising to distinguish hydrometeor morphology by utilizing the depolarization ratio and the backscattering coefficient, since its vertical high resolution (2.5 m) enable us to analyze detailed cloud microphysics. It would contribute to understanding cloud microphysics of cold clouds and snowfall when remote sensings including lidar, radar, and in-situ measurements could be timely utilized altogether.

Warm Season Hydro-Meteorological Variability in South Korea Due to SSTA Pattern Changes in the Tropical Pacific Ocean Region (열대 태평양 SSTA 패턴 변화에 따른 우리나라 여름철 수문 변동 분석)

  • Yoon, Sun-kwon;Kim, Jong-Suk;Lee, Tae-Sam;Moon, Young-IL
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.49-63
    • /
    • 2016
  • In this study, we analyzed the effects of regional hydrologic variability during warm season (June-September) in South Korea due to ENSO (El $Ni{\tilde{n}}o$-Southern Oscillation) pattern changes over the Tropical Pacific Ocean (TPO). We performed composite analysis (CA) and statistical significance test by Student's t-test using observed hydrologic data (such as, precipitation and streamflow) in the 113 sub-watershed areas over the 5-Major River basin, in South Korea. As a result of this study, during the warm-pool (WP) El $Ni{\tilde{n}}o$ year shows a significant increasing tendency than normal years. Particularly, during the cold-tongue (CT) El $Ni{\tilde{n}}o$ decaying years clearly decreasing tendency compared to the normal years was appeared. In addition, the La $Ni{\tilde{n}}a$ years tended to show a slightly increasing tendency and maintain the average year state. In addition, from the result of scatter plot of the percentage anomaly of hydrologic variables during warm season, it is possible to identify the linear increasing tendency. Also the center of the scatter plot shows during the WP El $Ni{\tilde{n}}o$ year (+17.93%, +26.99%), the CT El $Ni{\tilde{n}}a$ year (-8.20%, -15.73%), and the La $Ni{\tilde{n}}a$ year (+8.89%, +15.85%), respectively. This result shows a methodology of the tele-connection based long-range water resources prediction for reducing climate forecasting uncertainty, when occurs the abnormal SSTA (such as, El $Ni{\tilde{n}}o$ and La $Ni{\tilde{n}}a$) phenomenon in the TPO region. Furthermore, it can be a useful data for water managers and end-users to support long-range water-related policy making.

Distributions and Pollution History of Heavy Metals in Nakdong Estuary Sediments (낙동강 하구역 퇴적물 중금속의 분포와 오염의 역사 추정)

  • Cho, Jin-Hyung;Park, Nam-Joon;Kim, Kee-Hyun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.4
    • /
    • pp.285-294
    • /
    • 2000
  • In order to determine the horizontal and vertical distributions of metals and prospect the recent metal pollution history in Nakdong Estuary, we took surface and core sediments. Maximum value of organic matter occurs at the upstream site located 4 km from Nakdong barrage, and the concentration of trace metals (Zn, Cu, and Pb etc.) decrease seaward in the estuary. The sedimentation rates, based on $^{210}$Pb$_{ex}$ and $^{137}$Cs activities, were 0.34 cm/yr in inside of barrage (core 1) and 0.25 cm/yr in Changrim (core 4). Sediment mixing layer does not exist in core 1, where anoxic condition is known to be prevail. The topmost sediment layer of core 4 (<3.5 cm) is severely mixed. At sites 1 and 4, concentrations of Cu slowly increased during the period of 1920-1970, rapidly increased during 1970-1990, and followed by slight decrease after 1990. Zn contents increased in early 1960s and peaked in 1993, and followed by decrease after 1990s. Pb has increased continuously since early 1970s. At the downstream of the barrage, Cu and Zn have increased in the topmost layer. The trend of increase of Cu is evident after 1950 (11 cm in sediment depth). Overall trend of heavy metal concentration clearly indicates the pollution has been increasing after the construction of the barrage.

  • PDF

Characteristics of Flow and Sedimentation around the Embankment (방조제 부근에서의 흐름과 퇴적환경의 특성)

  • Lee Moon Ock;Park Il Heum;Lee Yeon Gyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.4
    • /
    • pp.37-55
    • /
    • 2000
  • Two-dimensional numerical experiments and field surveys have been conducted to clarify some environmental variations in the flow and sedimentation in the adjacent seas after the construction of a tidal embankment. Velocities of flow and water levels in the bay decreased after the construction of the barrage. When the freshwater was instantly released into the bay, the conditions of flow were unaltered, with the exception of a minor variation in velocities and tidal levels around the sluices at the ebb flow. The computational results showed that freshwater released at the low water reached the outside of the bay and then returned to the inside with the tidal currents at the high water. The front sea regions of the embankment had a variety of sedimentary phases such as a clayish silt, a silty clay and a sandy clayish silt. However, a clayish silt was prevalent in the middle of the bay. On the other hand, the skewness, which reflects the behaviour of sediments, was $\{pm}0.1$ at the front regions of the embankment while it was more than ±0.3 in the middle of the bay. Analytical results of drilling samples acquired from the front of the sluice gates showed that the lower part of the sediments consists of very fine silty or clayish grains. The upper surface layer consisted of shellfish, such as oyster or barnacle with a thickness of 40~50 cm. Therefore, it seemed that the lower part of the sediments would have been one of intertidal zones prior to the embankment construction while the upper shellfish layer would have been debris of shellfish farms formed in the adjacent seas after the construction of the embankment. This shows the difference of sedimentary phases reflected the influence of a tidal embankment construction.

  • PDF

Variations of Temperature and Salinity in Kugum Suro Channel (거금수로 해역의 수온과 염분의 변동)

  • CHOO Hyo-Sang;LEE Gyu-Hyong;YOON Yang-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.2
    • /
    • pp.252-263
    • /
    • 1997
  • Temperature and salinity were observed in Kugum Suro Channel in February, April, August and October 1993. Temperature ranged from $7.0^{\circ}C\;to\;25.0^{\circ}C$ throughout the year and its variation was about $18^{\circ}C$. The maximum temperature difference between surface and bottom was less than $0.75^{\circ}C$ for a year, which meant that the temperature stratification in Kugum Suro Channel was considerably week. Salinity had also a small variation range of less than $0.5\%_{\circ}$. Salinity varied from $34.0\%_{\circ}$ in April to $30.0\%_{\circ}$ in August and its fluctuation patterns were quite similar to the seasonal variations of the precipitation and the duration of sunshine observed at Kohung Weather station. Seasonal variation of sea water density in T-S diagram showed that the water mass in Kugum Suro Channel could be largely affected by regional atmospheric conditions. Temperature increased in ebb tide and decreased in flood tide, but salinity decreased in ebb tide and increased in flood tide for a day. The period of fluctuations in temperature and salinity measured for 25 hours was nearly coincident with the semi-diurnal tide which was predominant in that region. Stratification parameters computed in Kugum Suro Channel areas were less than $4.0J/m^3$ the year round, which indicated that vortical mixing from the bottom boundary caused by tidal current played an important role in deciding the stratification regime in Kugum Suro Channel. In estimating the equation which defines stratification and mixing effects in the observed areas, the tidal mixing term ranged from $4.7J/M^3\;to\;14.1J/m^3$ was greater than any other terms like solar radiation, river discharge and wind mixing.

  • PDF

Numerical Simulation of the Formation of Oxygen Deficient Water-masses in Jinhae Bay (진해만의 빈산소 수괴 형성에 관한 수치실험)

  • CHOI Woo-Jeung;PARK Chung-Kill;LEE Suk-Mo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.4
    • /
    • pp.413-433
    • /
    • 1994
  • Jinhae Bay once was a productive area of fisheries. It is, however, now notorious for its red tides; and oxygen deficient water-masses extensively develop at present in summer. Therefore the shellfish production of the bay has been decreasing and mass mortality often occurs. Under these circumstances, the three-dimensional numerical hydrodynamic and the material cycle models, which were developed by the Institute for Resources and Environment of Japan, were applied to analyze the processes affecting the oxygen depletion and also to evaluate the environment capacity for the reception of pollutant loads without dissolved oxygen depletion. In field surveys, oxygen deficient water-masses were formed with concentrations of below 2.0mg/l at the bottom layer in Masan Bay and the western part of Jinhae Bay during the summer. Current directions, computed by the $M_2$ constituent, were mainly toward the western part of Jinhae Bay during flood flows and in opposite directions during ebb flows. Tidal currents velocities during the ebb tide were stronger than that of the flood tide. The comparision between the simulated and observed tidal ellipses showed fairly good agreement. The residual currents, which were obtained by averaging the simulated tidal currents over 1 tidal cycle, showed the presence of counterclockwise eddies in the central part of Jinhae Bay. Density driven currents were generated southward at surface and northward at the bottom in Masan Bay and Jindong Bay, where the fresh water of rivers entered. The material cycle model was calibrated with the data surveyed in the field of the study area from June to July, 1992. The calibrated results are in fairly good agreement with measured values within relative error of $28\%$. The simulated dissolved oxygen distributions of bottom layer were relatively high with the concentration of $6.0{\sim}8.0mg/l$ at the boundaries, but an oxygen deficient water-masses were formed within the concentration of 2.0mg/l at the inner part of Masan Bay and the western part of Jinhae Bay. The results of sensitivity analyses showed that sediment oxygen demand(SOD) was one of the most important influence on the formation of oxygen depletion. Therefore, to control the oxygen deficient water-masses and to conserve the coastal environment, it is an effective method to reduce the SOD by improving the polluted sediment. As the results of simulations, in Masan Bay, oxygen deficient water-masses recovered to 5.0mg/l when the $50\%$ reduction in input COD loads from Masan basin and $70\%$ reduction in SOD was conducted. In the western part of Jinhae Bay, oxygen deficient water-masses recovered to 5.0mg/l when the $95\%$ reduction in SOD and $90\%$ reduction in culturing ground fecal loads was conducted.

  • PDF