• Title/Summary/Keyword: Se based materials

Search Result 444, Processing Time 0.03 seconds

Ge-Se 이원계 화합물을 이용한 ReRAM 스위칭 특성 분석에 관한 연구

  • Nam, Gi-Hyeon;Kim, Jang-Han;Jeong, Hong-Bae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.137-137
    • /
    • 2011
  • Programmable Metallization Cell (PMC) is a ReRAM device based on the electrolytical characteristic of chalcogenide materials. In this study, we investigated the nature of thin films formed by photo doping of Ag+ ions into chalcogenide materials for use in solid electrolyte of programmable metallization cell devices. We were able to do more economical approach by using Ag+ ions which play an electrolyte ions role. The results imply that a Ag-rich phase separates owing to the reaction of Ag with free atoms from chalcogenide materials.

  • PDF

Thermoelectric properties of Bi2Te2.7Se0.3 grown by traveling heater method (Traveling heater method에 의해 성장된 Bi2Te2.7Se0.3의 열전특성)

  • Roh, Im-Jun;Hyun, Dow-Bin;Kim, Jin-Sang
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.4
    • /
    • pp.135-139
    • /
    • 2015
  • $Bi_2Te_3-Bi_2Se_3$ alloy which is typical n-type thermoelectric material were grown by traveling heater method (THM) technique. We investigate the effect of the composition of $100-x(Bi_2Te_3)-x(Bi_2Se_3)$ and doping of n-type dopants such as $SbI_3$ and $CdCl_2$. Maximum figure of merit of $Bi_2Te_3-Bi_2Se_3$ alloy was observed with $CdCl_2$ 0.1 wt% (Z: $2.73{\times}10^{-3}/K$) and $SbI_3$ 0.05 wt% (Z: $2.29{\times}10^{-3}/K$). Deviation along the length of $Bi_2Te_3-Bi_2Se_3$ ingot grown by THM method is low, which indicates that the ingot is very homogenized. Also we observed the close relationship of between anisotropy ratio and dopant in the $90(Bi_2Te_3)-10(Bi_2Se_3)$ alloys. And we confirmed the fact that anisotropy ratio exerts thermoelectric performance in $Bi_2Te_3$ based n-type thermoelectric material.

High quality topological insulator Bi2Se3 grown on h-BN using molecular beam epitaxy

  • Park, Joon Young;Lee, Gil-Ho;Jo, Janghyun;Cheng, Austin K.;Yoon, Hosang;Watanabe, Kenji;Taniguchi, Takashi;Kim, Miyoung;Kim, Philip;Yi, Gyu-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.284-284
    • /
    • 2016
  • Topological insulator (TI) is a bulk-insulating material with topologically protected Dirac surface states in the band gap. In particular, $Bi_2Se_3$ attracted great attention as a model three-dimensional TI due to its simple electronic structure of the surface states in a relatively large band gap (~0.3 eV). However, experimental efforts using $Bi_2Se_3$ have been difficult due to the abundance of structural defects, which frequently results in the bulk conduction being dominant over the surface conduction in transport due to the bulk doping effects of the defect sites. One promising approach in avoiding this problem is to reduce the structural defects by heteroepitaxially grow $Bi_2Se_3$ on a substrate with a compatible lattice structure, while also preventing surface degradation by encapsulating the pristine interface between $Bi_2Se_3$ and the substrate in a clean growth environment. A particularly promising choice of substrate for the heteroepitaxial growth is hexagonal boron nitride (h-BN), which has the same two-dimensional (2D) van der Waals (vdW) layered structure and hexagonal lattice symmetry as $Bi_2Se_3$. Moreover, since h-BN is a dielectric insulator with a large bandgap energy of 5.97 eV and chemically inert surfaces, it is well suited as a substrate for high mobility electronic transport studies of vdW material systems. Here we report the heteroepitaxial growth and characterization of high quality topological insulator $Bi_2Se_3$ thin films prepared on h-BN layers. Especially, we used molecular beam epitaxy to achieve high quality TI thin films with extremely low defect concentrations and an ideal interface between the films and substrates. To optimize the morphology and microstructural quality of the films, a two-step growth was performed on h-BN layers transferred on transmission electron microscopy (TEM) compatible substrates. The resulting $Bi_2Se_3$ thin films were highly crystalline with atomically smooth terraces over a large area, and the $Bi_2Se_3$ and h-BN exhibited a clear heteroepitaxial relationship with an atomically abrupt and clean interface, as examined by high-resolution TEM. Magnetotransport characterizations revealed that this interface supports a high quality topological surface state devoid of bulk contribution, as evidenced by Hall, Shubnikov-de Haas, and weak anti-localization measurements. We believe that the experimental scheme demonstrated in this talk can serve as a promising method for the preparation of high quality TI thin films as well as many other heterostructures based on 2D vdW layered materials.

  • PDF

Fabrication of Mo Thin Film by Hydrogen Reduction of MoO3 Powder for Back Contact Electrode of CIGS (MoO3 분말의 수소환원을 통한 CIGS계 후면 전극용 Mo 박막제조)

  • Jo, Tae Sun;Kim, Se Hoon;Kim, Young Do
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.2
    • /
    • pp.187-191
    • /
    • 2011
  • In order to obtain a suitable back contacting electrode for $Cu(InGa)Se_2$-based photovoltaic devices, a molybdenum thin film was deposited using a chemical vapor transport (CVT) during the hydrogen reduction of $MoO_3$ powder. A $MoO_2$ thin film was successfully deposited on substrates by using the CVT of volatile $MoO_3(OH)_2$ at $550^{\circ}C$ for 60 min in a $H_2$ atmosphere. The Mo thin film was obtained by reduction of $MoO_2$ at $650^{\circ}C$ in a $H_2$ atmosphere. The Mo thin film on the substrate presented a low sheet resistance of approximately $1{\Omega}/sq$.

Effect of hydrofluoric acid-based etchant at an elevated temperature on the bond strength and surface topography of Y-TZP ceramics

  • Yu, Mi-Kyung;Lim, Myung-Jin;Na, Noo-Ri;Lee, Kwang-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.45 no.1
    • /
    • pp.6.1-6.8
    • /
    • 2020
  • Objectives: This study investigated the effects of a hydrofluoric acid (HA; solution of hydrogen fluoride [HF] in water)-based smart etching (SE) solution at an elevated temperature on yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) ceramics in terms of bond strength and morphological changes. Materials and Methods: Eighty sintered Y-TZP specimens were prepared for shear bond strength (SBS) testing. The bonding surface of the Y-TZP specimens was treated with 37% phosphoric acid etching at 20℃-25℃, 4% HA etching at 20℃-25℃, or HA-based SE at 70℃-80℃. In all groups, zirconia primers were applied to the bonding surface of Y-TZP. For each group, 2 types of resin cement (with or without methacryloyloxydecyl dihydrogen phosphate [MDP]) were used. SBS testing was performed. Topographic changes of the etched Y-TZP surface were analyzed using scanning electron microscopy and atomic force microscopy. The results were analyzed and compared using 2-way analysis of variance. Results: Regardless of the type of resin cement, the highest bond strength was measured in the SE group, with significant differences compared to the other groups (p < 0.05). In all groups, MDP-containing resin cement yielded significantly higher bond strength values than MDP-free resin cement (p < 0.05). It was also shown that the Y-TZP surface was etched by the SE solution, causing a large change in the surface topography. Conclusions: Bond strength significantly improved when a heated HA-based SE solution was applied to the Y-TZP surface, and the etched Y-TZP surface was more irregular and had higher surface roughness.

Efficiency Analysis with Deposition Time of OVC layer in Cu(InGa)$Se_2$ Films (Cu(InGa)$Se_2$ 박막 제조시 OVC층의 증발시간에 따른 광변환효율 분석)

  • Kim, S.K.;Lee, J.L.;Kang, K.H.;Yoon, K.H.;Park, I.J.;Song, S.;Han, S.O.
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1587-1589
    • /
    • 2002
  • Photovoltaics is considered as one of the most promising new energy technology, because its energy source is omni present, pollution-free and inexhaustive. It is agreed that these solar cells must be thin film type because thin film process is cost-efficive in the fact that it uses much less raw materials and can be continuous. The defect chalcopyrite material $CuIn_3Se_5$ has been identified as playing an essential role in efficient photovoltaic action in $CuInSe_2$-based devicesm It has been reported to be of n-type conductivity, forming a p-n junction with its p-type counterpart CuInSe2. Because the most efficient cells consist of the $Cu(In,Ga)Se_2$ quarternary, knowledge of some physical properties of the Ga-containing defect chalcopyrite $Cu(In,Ga)_3Se_5$ may help us better understand the junction phenomena in such devices.

  • PDF

Preparation of nanoparticles CuInSe2 absorber layer by a non-vacuum process of low cost cryogenic milling (저가의 cryogenic milling 비진공법을 이용한 나노입자 CuInSe2 광흡수층 제조)

  • Kim, Ki-Hyun;Park, Byung-Ok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.2
    • /
    • pp.108-113
    • /
    • 2013
  • Chalcopyrite material $CuInSe_2$ (CIS) is known to be a very prominent absorber layer for high efficiency thin film solar cells. Current interest in the photovoltaic industry is to identify and develop more suitable materials and processes for the fabrication of efficient and cost-effective solar cells. Various processes have been being tried for making a low cost CIS absorber layer, this study obtained the CIS nanoparticles using commercial powder of 6 mm pieces for low cost CIS absorber layer by high frequency ball milling and cryogenic milling. And the CIS absorber layer was prepared by paste coating using milled-CIS nanoparticles in glove box under inert atmosphere. The chalcopyrite $CuInSe_2$ thin films were successfully made after selenization at the substrate temperature of $550^{\circ}C$ in 30 min, CIS solar cell of Al/ZnO/CdS/CIS/Mo structure prepared under various deposition process such as evaporation, sputtering and chemical vapor deposition respectively. Finally, we achieved CIS nanoparticles solar cell of electric efficient 1.74 % of Voc 29 mV, Jsc 35 $mA/cm^2$ FF 17.2 %. The CIS nanoparticles-based absorber layers were characterized by using EDS, XRD and HRSEM.

Design and Synthesis of Multi Functional Noble Metal Based Ternary Nitride Thin Film Resistors

  • Kwack, Won-Sub;Choi, Hyun-Jin;Lee, Woo-Jae;Jang, Seung-Il;Kwon, Se-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.93-93
    • /
    • 2013
  • In recent years, multifunctional ternary nitride thin films have received extenstive attention due to its versatility in many applications. In particular, noble metal based ternary nitride thin films showed a promising properties in the application of Multifunctional heating resistor films because its good electrical properties and excellent resistance against oxidation and corrosion. In this study, we prepared multifunctional noble metal based ternary nitride thin films by atomic layer deposition (ALD) and plasma-enhanced ALD (PEALD) method. ALD and PEALD techniques were used due to their inherent merits such as a precise composition control and large area uniformity, which is very attractive for preparing multicomponent thin films on large area substrate. Here, we will demonstrate the design concept of multifunctional noble metal based ternary thin films. And, the relationship between microstructural evolution and electrical resistivity in noble metal based ternary thin films will be systemically presented. The useful properties of noble metal based ternary thin films including anti-corrosion and anti-oxidation will be discussed in terms of hybrid functionality.

  • PDF

Over 8% efficient nanocrystal-derived Cu2ZnSnSe4 solar cells with molybdenum nitride barrier films in back contact structure

  • Pham, Hong Nhung;Jang, Yoon Hee;Park, Bo-In;Lee, Seung Yong;Lee, Doh-Kwon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.426.2-426.2
    • /
    • 2016
  • Numerous of researches are being conducted to improve the efficiency of $Cu_2ZnSnSe_4$ (CZTSe)-based photovoltaic devices, which is one of the most promising candidates for low cost and environment-friendly solar cells. In this work, we concentrate on the back contact of the devices. A proper thickness of $MoSe_2$ in back contact structure is believed to enhance adhesion and ohmic contact between Mo back contact and absorber layer. Nevertheless, too thick $MoSe_2$ layers that are grown during high-temperature selenization process can impede the current collection, thus resulting in low cell performance. By applying molybdenum nitride as a barrier in back contact structure, we were able to control the thickness of $MoSe_2$ layer, which resulted in lower series resistance and higher fill factor of CZTSe devices. The phase transformation of Mo-N binary system was systematically studied by changing $N_2$ concentration during the sputtering process. With a proper phase of Mo-N fabricated by using an adequate partial pressure of $N_2$, the efficiency of CZTSe solar cells as high as 8.31% was achieved while the average efficiency was improved by about 2% with respect to that of the referent cells where no barrier layer was employed.

  • PDF

Synthesis and Characterization of CdSe Quantum Dot with Injection Temperature and Reaction Time (Injection 온도 및 합성시간에 따른 CdSe 양자점 합성 및 특성)

  • Eom, Nu-Si-A;Kim, Taek-Soo;Choa, Yong-Ho;Kim, Bum-Sung
    • Korean Journal of Materials Research
    • /
    • v.22 no.3
    • /
    • pp.140-144
    • /
    • 2012
  • Compared with bulk material, quantum dots have received increasing attention due to their fascinating physical properties, including optical and electronic properties, which are due to the quantum confinement effect. Especially, Luminescent CdSe quantum dots have been highly investigated due to their tunable size-dependent photoluminescence across the visible spectrum. They are of great interest for technical applications such as light-emitting devices, lasers, and fluorescent labels. In particular, quantum dot-based light-emitting diodes emit high luminance. Quantum dots have very high luminescence properties because of their absorption coefficient and quantum efficiency, which are higher than those of typical dyes. CdSe quantum dots were synthesized as a function of the synthesis time and synthesis temperature. The photoluminescence properties were found strongly to depend on the reaction time and the temperature due to the core size changing. It was also observed that the photoluminescence intensity is decreased with the synthesis time due to the temperature dependence of the band gap. The wavelength of the synthesized quantum dots was about 550-700 nm and the intensity of the photoluminescence increased about 22~70%. After the CdSe quantum dots were synthesized, the particles were found to have grown until reaching a saturated concentration as time increased. Red shift occurred because of the particle growth. The microstructure and phase developments were measured by transmission electron microscopy (TEM) and X-ray diffractometry (XRD), respectively.