• 제목/요약/키워드: Se Deposition

검색결과 474건 처리시간 0.028초

Cu(InGa)Se$_2$ 박막의 성장온도에 따른 태양전지의 광전특성 분석 (Photovoltaic Properties of Solar Cells with Deposition Temperature of Cu(InGa)Se$_2$ Films)

  • 김석기;이정철;강기환;윤경훈;박이준;송진수;한상옥
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.330-333
    • /
    • 2002
  • The substrate temperature is an important parameter in thin film deposition process. In this paper the effects of the substrate temperature on the properties of CuIn0.75Ga0.25Se2(CIGS) thin films are reported. Structure, surface morphology and optical properties of CIGS thin films deposited at various substrate temperatures have been investigated using a number of analysis techniques. X-ray diffraction (XRD) analysis shows that CIGS films exhibit a strong <112> preferred orientation. As expected, at higher substrate temperatures the films displayed a higher degree of crystallinity. The <112> peak was also enhanced and other CIGS peaks appeared simultaneously These results were supported by experimental work using Raman spectroscopy. The Raman spectra of the as-grown CIGS thin films show only the Al mode peak. The intensity of this peak was enhanced at higher deposition temperatures. Scanning electron microscopy (SEM) results revealed very small grains in films fabricated at 48$0^{\circ}C$ substrate temperature. When the substrate temperature was increased the average grain size also increased together with a reduction in the number and size of the voids. The deposition temperature also had a significant influence on the transmission spectra.

  • PDF

Na2S 하부층을 이용한 Cu(In,Ga)Se2 광흡수층의 저온증착 및 Cu(In,Ga)Se2 박막태양전지에의 응용 (Low-temperature Deposition of Cu(In,Ga)Se2 Absorber using Na2S Underlayer)

  • 신해나라;신영민;김지혜;윤재호;박병국;안병태
    • Current Photovoltaic Research
    • /
    • 제2권1호
    • /
    • pp.28-35
    • /
    • 2014
  • High-efficiency in $Cu(In,Ga)Se_2$ (CIGS) solar cells were usually achieved on soda-lime glass substrates due to Na incorporation that reduces deep-level defects. However, this supply of sodium from sodalime glass to CIGS through Mo back electrode could be limited at low deposition temperature. Na content could be more precisely controlled by supplying Na from known amount of an outside source. For the purpose, an $Na_2S$ layer was deposited on Mo electrode prior to CIGS film deposition and supplied to CIGS during CIGS film. With the $Na_2S$ underlayer a more uniform component distribution was possible at $350^{\circ}C$ and efficiency was improved compared to the cell without $Na_2S$ layer. With more precise control of bulk and surface component profile, CIGS film can be deposited at low temperature and could be useful for flexible CIGS solar cells.

$Cu_2ZnSnSe_4$ 태양전지의 적용을 위한 최적화 된 CdS 버퍼층 연구 (Optimization of CdS buffer layers for $Cu_2ZnSnSe_4$ thin-film applications)

  • 김지영;정아름;조윌렴
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2012년도 춘계학술발표대회 논문집
    • /
    • pp.400-403
    • /
    • 2012
  • $Cu_2ZnSnSe_4$(CZTSe) is emerged as a promising material for thin-film solar cells because of non-toxic, inexpensive and earth abundant more than $Cu(In,Ga)Se_2$ materials. For fabricating compound semiconductor thin-film solar cells, CdS is widely used for a buffer layer which fabricated by a chemical bath deposition method (CBD). Through the experiment, we controlled deposition temperature and mol ratio of solution conditions to find the proper grain 크기 and exact composition. The optimum CdS layers were characterized in terms of surface morphology by using a scanning electron microscope (SEM) and atomic force microscope (AFM). The optimized CdS layer process was applied on CZTSe thin-films. The thickness of buffer layer related with device performance of solar cells which controlled by deposition time. Local surface potential of CdS/CZTSe thin-films was investigated by Kelvin probe force microscopy (KPFM). From these results, we can deduce local electric properties with different thickness of buffer layer on CZTSe thin-films. Therefore, we investigated the effect of CdS buffer layer thickness on the CZTSe thin-films for decreasing device losses. From this study, we can suggest buffer layer thickness which contributes to efficiencies and device performance of CZTSe thin-film solar cells.

  • PDF

셀레늄강화 버섯폐배지의 급여기간이 거세한우의 조직내 셀레늄축적에 미치는 영향 (Effects of the Feeding Length of Spent Mushroom Composts from Selenium-Enriched Mushroom on Selenium Deposition in Finishing Hanwoo Steers)

  • 김완영;이기종;노환국;이장형
    • 현장농수산연구지
    • /
    • 제7권1호
    • /
    • pp.97-108
    • /
    • 2005
  • 본 연구는 사료내 적정 셀레늄수준(0.9ppm)에서 Se-SMC(유기셀레늄강화버섯폐배지)의 급여사양기간(2개월, 4개월, 6개월)을 달리 했을 때, 비육후기 한우의 조직 내 셀레늄함량에 미치는 영향을 조사하여 최대포화축적기간을 제시하고자 실시하였다. Se-SMC 급여기간에 따른 비육후기 한우의 건물섭취량은 급여기간과 셀레늄수준에 의하여 처리구 간에 유의한 차이가 나타나지 않았고, 셀레늄이 사료섭취의 제한요인으로 나타나지 않았다. 또한, 사양시험 개시체중과 종료체중은 급여기간이 증가함에 따라 유의하게 낮았다(p<0.01). 하지만, 총 증체량은 급여기간이 증가함에 따라 유의하게 증가하였으나(P<0.0001), Se-SMC에 의한 효과 또한 나타나지 않았다. 한편, 사료내 셀레늄수준은 한우의 혈중 셀레늄농도를 유의하게 증가시켰으나(p<0.0001), 급여기간에 따른 효과는 나타나지 않았다. 등심내 셀레늄함량은 급여기간과 사료내 셀레늄수준에 의하여 유의한 효과가 나타나지 않았다. 후지내 셀레늄함량은 급여기간이 증가함에 따라 유의하게 증가하였으나(p<0.05), Se-SMC의 4개월 급여군과 6개월 급여군간에는 유의한 차이가 나타나지 않았다. 간내 셀레늄함량은 급여기간의 효과는 나타나지 않았지만, 셀레늄효과는 대조구에 비하여 유의하게 증가하였다(p<0.0001). 따라서, 본 연구에서 근육내 셀레늄에 대한 Se-SMC급여기간은 4개월 정도가 적당할 것으로 생각된다.

Effects of Spent Composts of Selenium-enriched Mushroom and Sodium Selenite on Plasma Glutathione Peroxidase Activity and Selenium Deposition in Finishing Hanwoo Steers

  • Lee, S.H.;Park, B.Y.;Lee, Sung S.;Choi, N.J.;Lee, J.H.;Yeo, J.M.;Ha, J.K.;Maeng, W.J.;Kim, W.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제19권7호
    • /
    • pp.984-991
    • /
    • 2006
  • Effects of spent composts of selenium-enriched mushroom (Se-SMC) on plasma glutathione peroxidase (GSH-Px) activity and selenium (Se) deposition in finishing Hanwoo (Bos taurus coreanae) steers were investigated. Twenty-five Hanwoo steers (average body weight = 613 kg, average age = 22 months) were allotted to treatments in five groups of five steers per pen for 12 weeks preceding slaughter. Treatments were SMC alone (CON; 0.1 ppm Se), 0.3 ppm (0.3 Se-SMC), 0.6 ppm (0.6 Se-SMC), 0.9 ppm (0.9 Se-SMC), and 0.9 ppm (sodium selenite; SENI) Se. During the experimental period, blood samples were taken to analyze Se concentrations and GSH-Px activities. Muscle and liver samples were collected for analyses of Se contents after slaughter. Dry matter intake and body weight gain were not affected by Se-SMC or sodium selenite supplementation. Selenium concentration in the whole blood and GSH-Px activity in plasma were linearly increased (p<0.01) with increasing levels of Se-SMC. The whole blood Se concentration of SENI treatment was significantly higher (p<0.05) than that of CON treatment from 4 weeks, whereas there was no significant difference in GSH-Px activities between both treatments at 8 and 12 weeks. Selenium content in the hind leg and liver increased linearly (p<0.05) with increasing levels of Se-SMC, but those of SENI treatments were not significantly different from CON treatments. These results suggested that Se in the Se-SMC was highly bioavailable to blood and tissues of ruminants, especially compared with Se in the sodium selenite. Therefore, Se-SMC might be used not only as an inexpensive way of providing Se for ruminants but also as another way of producing Se-fortified beef.

Effects of different levels of organic chromium and selenomethionine cocktails in broilers

  • Jaewoo An;Younggwang Kim;Minho Song;Jungseok Choi;Hanjin Oh;Seyeon Chang;Dongcheol Song;Hyunah Cho;Sehyun Park;Kyeongho Jeon;Yunhwan Park;Gyutae Park;Sehyuk Oh;Yuna Kim;Nayoung Choi;Jongchun Kim;Hyeunbum Kim;Jinho Cho
    • Journal of Animal Science and Technology
    • /
    • 제65권6호
    • /
    • pp.1226-1241
    • /
    • 2023
  • Selenium (Se) is an essential trace mineral that plays an important role in physiological processes by regulating the antioxidant defense system and enhancing immunity. Chromium is an essential mineral involved in carbohydrate and lipid metabolism and also plays a role in maintaining normal insulin function. Based on these advantages, we hypothesized that the addition of selenomethionine (SeMet) and organic chromium (OC) to broiler diets would increase Se deposition, antioxidant capacity and immune response in meat. Therefore, this study analyzed the effects of OC and SeMet on growh performance, nutrients digestibility, blood profiles, intestinal morphology, meat quality characteristics, and taxonomic analysis of broilers. A total of 168 one-day-old broiler chicken (Arbor Acres) were randomly allotted to 3 groups based on the initial body weight of 37.33 ± 0.24 g with 7 replicate per 8 birds (mixed sex). The experiments period was 28 days. Dietary treatments were folloewd: Basal diets based on corn-soybean meal (CON), basal diet supplemented with 0.2 ppm OC and 0.2 ppm SeMet (CS4), and basal diet supplemented with 0.4 ppm OC and 0.4 ppm SeMet (CS8). Supplementation of OC and SeMet did not affect on growth performance, nutrient digestibility. However, CS8 supplementation increased in duodenum villus height and villus height : crypt depth, and increased in breast meat Se deposition. In addition, CS8 group showed higher uric acid and total antioxidant status than CON group. Taxonomic analysis at phylum level revealed that Proteobacteria and Firmicutes of CS4 and CS8 were lower than CON group. In genus level, the relative abundance of fecal Lactobacillus and Enterococcus of CS4 and CS8 groups were higher than CON group. In short, 0.4 ppm OC and 0.4 ppm SeMet supplementation to broiler diet supporitng positive gut microbiome change, also enhancing antioxidant capacity, and Se deposition in breast meat.

Optimization of ZnO:Al properties for $CuInSe_2$ superstrate thin film solar cell

  • 이은우;박순용;이상환;김우남;정우진;전찬욱
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2010년도 춘계학술발표대회
    • /
    • pp.36.1-36.1
    • /
    • 2010
  • While the substrate-type solar cells with Cu(In,Ga)Se2 absorbers yield conversion efficiencies of up 20%[1], the highest published efficiency of Cu(In,Ga)Se2 superstrate solar cell is only 12.8% [2]. The commerciallized Cu(In,Ga)Se2 solar cells are made in the substrate configuration having the stacking sequence of substrate (soda lime glass)/back contact (molybdenum)/absorber layer (Cu(In,Ga)Se2)/buffer layer (cadmium sulfide)/window layer (transparent conductive oxide)/anti reflection layer (MgF2) /grid contact. Thus, it is not possible to illuminate the substrate-type cell through the glass substrate. Rather, it is necessary to illuminate from the opposite side which requires an elaborate transparent encapsulation. In contrast to that, the configuration of superstrate solar cell allows the illumination through the glass substrate. This saves the expensive transparent encapsulation. Usually, the high quality Cu(In,Ga)Se2 absorber requires a high deposition temperature over 550C. Therefore, the front contact should be thermally stable in the temperature range to realize a successful superstrate-type solar cell. In this study, it was tried to make a decent superstrate-type solar cell with the thermally stable ZnO:Al layer obtained by adjusting its deposition parameters in magnetron sputtering process. The effect of deposition condition of the layer on the cell performance will be discussed together with hall measurement results and current-voltage characteristics of the cells.

  • PDF

스퍼터링 및 셀렌화 열처리에 의한 $CuInSe_2$ 박막제조 ($CuInSe_2$ thin film is manufactured by the Sputtering and Selenization process)

  • 문동권;안세진;윤재호;곽지혜;이희덕;윤경훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.83-84
    • /
    • 2009
  • Thin film solar cells based on CIGS continue to be a leading candidate for thin film photovoltaic devices due to their appropriate bandgap, long-term stability, and low-cost production. To date, the most successful technique for the deposition of a CIGS absorber layer has been based on the co-evaporation However, the evaporation process is difficult to scale-up for large-area manufacturing the sputtering and Selenizaton process has been a promising method for low-cost and large-scale production of high quality CIGS In this study, we have used Cu and CuIn alloy targets for precursor deposition the precursor deposited by sputtering Cu and CuIn targets and $CuInSe_2$ thin film is manufactured by Selenization process

  • PDF

PLD법을 이용한 다양한 온도에서의 $FeSe_x$ 초전도 박막 성장 (Growth of $FeSe_x$ Superconducting Thin Films at Various Temperatures by PLD Technique)

  • 정순길;이남훈;강원남;황태종;김동호
    • Progress in Superconductivity
    • /
    • 제13권2호
    • /
    • pp.117-121
    • /
    • 2011
  • We have fabricated $FeSe_x$ superconducting thin films at much different substrate temperatures of 430 and $610^{\circ}C$ on $Al_2O_3$(0001) substrates by using a pulsed laser deposition (PLD) technique. Superconducting transitions for both films were shown around 10 K, but their transition width and growth directions of grains were different. We found that superconducting tetragonal FeSe phases and non-superconducting hexagonal FeSe phases were coexisted in the sample grown at the low temperature of $430^{\circ}C$, whereas the hexagonal FeSe phase was decreased with increasing fabrication temperatures.