Growth of FeSe_x Superconducting Thin Films at Various Temperatures by PLD Technique

Soon-Gil Jung^a, N. H. Lee^a, W. N. Kang^{*,a}, Tae-Jong Hwang^b, D. H. Kim^b

^a BK21 Physics Division and Department of Physics, Sungkyunkwan University, Suwon 440-746, Republic of Korea ^b Department of Physics, Yeungnam University, Gyeongsan 712-749, Republic of Korea (Received 21 October 2011 revised 25 November 2011 accepted 10 December 2011)

PLD법을 이용한 다양한 온도에서의 FeSe_x 초전도 박막 성장 _{정순길}^a, 이남훈^a, 강원남^{*,a}, 황태종^b, 김동호^b

Abstract

We have fabricated FeSe_x superconducting thin films at much different substrate temperatures of 430 and 610 °C on Al₂O₃(0001) substrates by using a pulsed laser deposition (PLD) technique. Superconducting transitions for both films were shown around 10 K, but their transition width and growth directions of grains were different. We found that superconducting tetragonal FeSe phases and non-superconducting hexagonal FeSe phases were coexisted in the sample grown at the low temperature of 430 °C, whereas the hexagonal FeSe phase was decreased with increasing fabrication temperatures.

Keywords : FeSex thin film, Fe-based superconductor, Pulsed laser deposition

I. 서론

2008년 일본의 Hosono 그룹에 의해 발견된 LaFeAsO_{1-x}F_x [1] 철기반 초전도체(Fe-based superconductor)는, 강자성체인 철(Fe)을 포함하 고 있음에도 불구하고 26 K의 높은 초전도 전 이 온도(T_c)를 보임으로써 많은 연구자들에게 크게 흥미를 불러일으켰다. LaFeAsO_{1-x}F_x가 발 견된 뒤 불과 2년 만에 70여종이 넘는 철-기반 초전도 물질이 발견되었으며, 이들은 구조적으 로 크게 *RE*FeAsO (Fe-1111, *RE*: Rare Earth), *AE*Fe₂As₂ (Fe-122, *AE*: Alkaline Earth), *A*FeAs (Fe-111, *A*=Li, Na), 그리고 Fe*Ch* (Fe-11, *Ch*: Chalcogenide) 군 등으로 무리 지을 수 있다 [2, 3]. 또한, 작년에는 Fe-122 군과 같은 구조를 가지지만, 초전도의 근원이 다른 것으로 여겨 지는 새로운 철-기반 초전도체인 K_xFe₂Se₂가 발 견되어 철-기반 초전도 연구에 한층 더 활기를 불러일으키고 있다 [4, 5].

철-기반 초전도체는 구리산화물 고온 초전도 체(high-T_c cuprate superconductor)들처럼 층상구

^{*}Corresponding author. Fax : +82 31 290 7055 e-mail : wnkang@skku.edu

조를 가지고 있으며, 초전도 근원 또한 자기적 성질과 관련이 있는 것으로 여겨지기 때문에 고온초전도의 근원을 밝혀내기 위해 이에 대한 깊은 연구가 필요하다 [6]. 이를 위해 크기가 큰 단결정이나 박막 등의 시료가 필요하지만, 아직까지 양질의 단결정 및 박막성장에는 어려 움을 겪고 있다. 또한, 비소(As)의 맹독성 및 높은 휘발성 등의 문제로 박막에 대한 연구는 다결정 및 단결정 연구에 비하여 아주 미미한 상태이다 [7].

단 두 원소만의 결합으로 이루어진 FeSe는 철-기반 초전도체중 가장 간단한 구조를 가지 고 있으며 [8], 초전도 전이온도(T_c)는 10 K 정 도로 낮지만, 약 7 GPa의 압력하에서 T_c가 37 K 까지 상승하는 압력에 아주 민감한 반응을 보 인다 [9]. 이러한 관점에서, FeSe는 물성 연구 및 응용적인 면에서 아주 흥미로운 물질이라 할 수 있다.

본 연구에서는 pulsed laser deposition (PLD) 방법을 이용한 FeSe_x 초전도 박막의 제조 방법 및 그 결과에 대하여 보고하고자 한다. FeSe_x 박막 증착을 위하여 기판은 Al₂O₃(0001)이 사용 되었으며, 610 ℃의 높은 기판온도(*T*_s: substrate temperature)에서 양질의 FeSe_x 박막을 얻을 수 있었다.

Ⅱ. 실험방법

FeSe_x 초전도 박막 제작을 위해 pulsed laser deposition (PLD) 방법과 본 연구실에서 제작된 FeSe 타겟(target)을 이용하였다 [10]. FeSe 타겟 은, 먼저 각각 99.9 %의 순도를 가지는 Fe와 Se 분말을 1:1 비율로 섞은 후 석영관에 넣어 밀봉한 뒤 350 ℃에서 36시간 열처리하였고, 그 후 선 반응된 분말을 꺼내어 다시 고르게 섞은 후 15 mm의 지름을 가지는 원판형태로 압착시 켜 250 ℃에서 36시간 열처리하는 방법으로 제 작되었다. 시료의 산화 및 오염을 방지하기 위 하여 분말을 고르게 섞는 모든 과정은 5N의 순도를 가지는 Ar 분위기의 glove bag내에서 이 루어졌다. 레이저 빔은 Lambda Physik KrF excimer laser (λ=248 nm, 25 ns)로부터 얻었다.

먼저 박막 증착을 위하여 터보 분자 펌프를

이용하여 챔버(chamber) 내부의 진공도를 ~ 5×10⁶ Torr가 되게 하였다. 그런 다음 430 ℃의 낮은 기판온도(*T*_s)와 610 ℃의 높은 *T*_s에서 Al₂O₃(0001) 기판 위에 박막을 각각 증착하였다. 레이저의 에너지 밀도는 1.15 J/cm², 기판과 타 겟 사이의 거리는 30 mm로 고정하였다. 레이 저 빔의 반복률(repetition rate)은 *T*_s가 430 ℃일 경우 2 Hz, 610 ℃일 경우 48 Hz를 사용하였다.

X-선 회절(XRD: X-ray diffraction)을 이용하여 제작된 박막들의 결정성을 조사하였고, 에너지 분산형 분석기(EDS: Energy dispersive spectroscopy)와 전자주사현미경(SEM: Scanning electron microscope)을 이용하여 박막의 성분분 석과 표면조사를 각각 하였다. 온도에 따른 전 기저항은 4-단자법(4-probe method)을 이용하여 측정하였으며, physical property measurement system (PPMS)을 사용하여 자기장에 따른 저항 의 온도의존성을 측정하였다.

Ⅲ. 결과 및 토의

Fig. 1. XRD patterns of a $\theta - 2\theta$ scan for FeSe_x films prepared at T_s =430 and 610 °C, clearly shown that the hexagonal phase is almost depressed in the film fabricated at T_s =610 °C compared to the film grown at T_s =430 °C. T and H indicate the tetragonal and hexagonal structure for FeSe, respectively.

Fig. 1은 430와 610 °C의 기판온도(*T*_s)에서 제 작된 된 두 FeSe_x 박막의 X-선 회절 패턴을 나 타낸다. 430 °C에서 증착된 FeSe_x 박막에서는 정 방구조 (T: tetragonal structure)와 육방구조(H: hexagonal structure)가 섞여 있는 반면, 610 ℃에 서 증착된 박막의 경우 육방구조는 거의 사라 졌으며, 정방구조의 (00/)면 반사 또한 사라지고 (101)면 반사가 지배적으로 나타났다. 본 연구에서 보이는 온도에 따른 서로 다른 면의 결정성장 경향성은 Wang et al.에 의해 연구 보고 된 결과와 일치함을 보인다 [11].

FeSe는 제작 온도 및 성분 비율에 따라 그 구조가 정방 및 육방구조로 성장되며, 정방구 조를 가지는 FeSe는 10 K 근방에서 초전도성을 보이는 반면, 육방구조는 강자성을 띤다고 알 려져 있다 [8, 12, 13]. 에너지 분산형 분석기 (EDS)를 통해 증착된 박막들의 성분분석 결과, *T_s*=430 ℃일 경우 Fe:Se=1:1.31, *T_s*=610 ℃ 일 경 우 Fe:Se=1:0.91의 성분비를 보였다. 이는 비록 Fe:Se≈1:1의 성분비를 가지는 타겟을 사용하여 FeSe 박막을 증착했음에도 불구하고 저온에서 증착된 박막에서는 Fe보다 Se이 많이 존재함으 로써 육방구조의 FeSe가 성장 되었고, XRD 결 과에서 육방구조의 (00/)면 반사가 크게 나타난 것으로 여겨진다 [12].

Fig. 2는 전자주사현미경(SEM)을 이용하여 얻은 FeSe_x 박막들의 표면사진이다. Fig. 2(a)와 (b)는 각각 430과 610 ℃에서 성장시킨 박막들 의 표면 사진을 나타내는데, 저온에서 성장시 킨 박막의 경우 고온에서 성장시켰을 경우에 비해 표면이 더 매끄러운 것을 볼 수 있다. 하 지만, 몇 곳에 갈라진 틈이 보이는데, 이는 FeSe와 Al₂O₃(0001) 기판의 살창 상수(lattice parameter) 차이가 크기 때문에 발생한 것으로 여겨지며 전류 수송 방해를 야기한다 [14].

Fig. 2. Surface morphologies for FeSe_x films grown at T_s =430 °C (a) and T_s =610 °C (b). The film grown at 430 °C shows the smooth plane view compared to the films grown at 610 °C, but it has some cracks, indicated by the arrows, which affect to the current flow.

Fig. 3. (a) Temperature dependences of normalized resistance for FeSe_x films prepared at T_s =410 and 610 °C, (b) is enlarged image near T_c , where the resistances are normalized at 13 K.

Fig. 3(a)는 본 연구에서 제작된 FeSe, 박막들 의 저항의 온도의존성을 나타내는데, T_=610 ℃ 에서 증착된 박막은 단결정 및 다결정 저항의 온도의존성과 같은 양상을 보인다 [8, 15]. 또한, 잔류 저항비(RRR: residual resistance ratio)는 각 각 T₅=430 ℃일 경우 2.3, T₅=610 ℃일 경우 4.4 의 값을 가졌다. Fig. 3(b)는 초전도 전이온도(T_a) 근처에서 확대한 그림인데, 고온에서 증착된 FeSex 박막의 경우 저온에서 증착된 박막보다 좁은 초전도 전이 폭(△T_c)을 보였으며, 이에 대 한 것은 Table 1에 정리하여 나타내었다. 430 ℃ 에서 증착된 박막의 경우 넓은 전이 폭과 낮은 RRR 값을 가지는데, 그 이유는 육방구조의 FeSe와 Fe7Se8등의 자성을 띠는 불순물과 Fig. 2(a)의 표면 사진에서 보이는 것처럼 여러 곳 에서 발생한 갈라진 틈 때문인 것으로 사료된 다 [14].

Table 1. Summary of R - T data for FeSe_x films, obtained from Fig. 3: superconducting transition temperature $T_{c,90\%}$ (90 % of R) and $T_{c,10\%}$ (10 % of R), superconducting transition width ΔT_c (= $T_{c,90\%} - T_{c,10\%}$), and residual resistance ratio RRR (= R_{300K}/R_{13K}).

$T_{\rm s}$ (°C)	$T_{c,90\%}$ (K)	$T_{c,10\%}(K)$	$\Delta T_{\rm c}({\rm K})$	RRR
430	11.2	6.3	4.9	2.3
610	10.7	8.2	2.5	4.4

Fig. 4. Temperature dependences of resistivity under magnetic fields up to 7 T for the FeSe_x films fabricated at 610 °C, where the fields were applied to the parallel direction to the substrate plane. The inset shows the linear fittings for $H_{c2}(T)$ at $\rho_{10\%}$ (10% of ρ_n), $\rho_{50\%}$ (50% of ρ_n), and $\rho_{90\%}$ (90% of ρ_n), where ρ_n is the normal state resistivity near T_c .

마지막으로, 성장시킨 FeSe_x 박막의 상부 임 계자기장(H_{c2})을 구하기 위하여 PPMS를 이용 하여 $T_s=610$ °C에서 증착된 FeSe_x 박막의 저항 의 온도의존성을 여러 자기장 하에서 측정하여 Fig. 4에 나타내었다. 이때, 자기장은 기판에 수 직한 방향으로 0 에서 7 T까지 변화시켜가며 가해주었다. 이로부터 구한 온도에 따른 $H_{c2}(T)$ 값을 Fig. 4에 삽화하여 나타내었다. 각 자기장 하에서 구한 $H_{c2}(T)$ 값을 선형 바깥늘림(linear extrapolation)하여 0 K에서의 $H_{c2}(0)$ 값을 구하 였다 [16]. $\rho_{10\%}$, $\rho_{50\%}$, and $\rho_{90\%}$ 은 각각 T_c 근방의 상전도 상태 저항(ρ_n : normal state resistivity) 값 의 10 %, 50 %, 그리고 90 %가 되는 지점으로, $\rho_{90\%}$ 을 기준으로 한 경우 $H_{c2}(0)$ 는 58 T의 값을 보였다. 이는 FeSe 초전도체의 T_c 를 고려해 볼 때 아주 높은 값이며, 살창 상수 값이 크게 불 일치 하는 Al₂O₃(0001) 기판 위에서도 성장이 가능하다는 점을 고려해 볼 때 이 물질의 응용 가능성을 시사한다고 볼 수 있다.

IV. 결론

Pulsed laser deposition 방법과 본 연구실에서 제작된 FeSe 타겟을 이용하여 430와 610 ℃의 서로 다른 기판온도 영역에서 FeSe_x 초전도 박 막을 Al₂O₃(0001) 기판 위에 중착하였다. 그 결 과 610 ℃의 고온에서 품질이 우수한 FeSe_x 박 막을 중착할 수 있었다. 이 경우 FeSe 단결정 및 다결정과 비슷한 특성을 보였으며, 58 T의 높은 *H*_{c2}(0)를 보임으로써 이 물질의 응용가능 성을 보여주었다.

Acknowledgements

This work was supported by Mid-career Researcher Program through NRF grant funded by the Ministry of Education, Science & Technology (MEST) (No. 2010-0029136).

References

- [1] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, "Iron-Based Layered Superconductor $La[O_{1-x}F_x]FeAs$ (x=0.05 0.12) with $T_c=26$ K", J. Am. Chem. Soc. 130, 3296-3297 (2008).
- [2] C. W. Chu, "Alive and kicking", Nat. Phys. 5, 787-789 (2009).
- [3] Zhi-An Ren and Zhong-Xian Zhao, "Research and Prospects of Iron-Based Superconductors", Adv. Mater. 21, 1-9 (2009).
- [4] J. Guo, S. Jin, G. Wang, S. Wang, K. Zhu, T. Zhou, M. He, and X. Chen, "Superconductivity in the iron selenide K_xFe₂Se₂ (0≤x≤1.0)", *Phys. Rev.* B 82, 180520(R) (2010).
- [5] B. Zeng, B. Shen, G. F. Chen, J. B. He, D. M. Wang, C. H. Li, and H. H. Wen, "Nodeless superconductivity

of single-crystalline $K_xFe_{2-y}Se_2$ revealed by the low-temperature specific heat", *Phys. Rev.* B 83, 144511 (2011).

- [6] Igor I. Mazin, "Superconductivity gets an iron boost", *Nature* 464, 183-186 (2010).
- [7] S. Ueda, T. Yamagishi, S. Takeda, S. Agatsuma, S. Takano, A. Mitsuda, and M. Naito, "MBE growth of Fe-based superconducting films", *Physica C* 471, 1167-1173 (2011).
- [8] Y. Mizuguchi and Y. Takano, "Review of Fe Chalcogenides as the Simplest Fe-Based Superconductor", J. Phys. Soc. Jpn. 79, 102001 (2010).
- [9] S. Margadonna, Y. Takabayashi, Y. Ohishi, Y. Mizuguchi, Y. Takano, T. Kagayama, T. Nakagawa, M. Takata, and K. Prassides, "Pressure evolution of the low-temperature crystal structure and bonding of the superconductor FeSe (*T_c*=37 K)", *Phys. Rev.* B 80, 064506 (2009).
- [10] Soon-Gil Jung, N. H. Lee, Eun-Mi Choi, W. N. Kang, Sung-Ik Lee, Tae-Jong Hwang, and D. H. Kim, "Fabrication of FeSe_{1-x} superconducting films with

bulk properties", Physica C 470, 1977-1980 (2010).

- [11] M. J. Wang *et al.*, "Crystal Orientation and Thickness Dependence of the Superconducting Transition Temperature of Tetragonal FeSe_{1-x} Thin Films". *Phys. Rev. Lett.* 103, 117002 (2009).
- [12] H. Okamoto, "The Fe-Se (Iron-Selenium) System", J. Phsae Equilib. 12, 383-389 (1991).
- [13] T. Hirone, S. Maeda, and N. Tsuya, "On the Ferrimagnetism of Iron Selenides", J. Phys. Soc. Jpn. 9, 496-499 (1954).
- [14] Ta-Kun Chen *et al.*, "Low-temperature fabrication of superconducting FeSe thin films by pulsed laser deposition", *Thin Solid Films* 519, 1540-1545 (2010).
- [15] D. Braithwaite, B. Salce, G. Lapertot, F. Bourdarot, C. Marin, D. Aoki, and M. Hanfland, "Superconducting and normal phases of FeSe single crystals at high pressure", *J. Phys.: Condens. Matter* 21, 232202 (2009).
- [16] Y. Mizuguchi, F. Tomioka, S. Tsuda, T. Yamaguchi, and Y. Takano, "Superconductivity at 27 K in tetragonal FeSe under high pressure", *Appl. Phys. Lett.* 93, 152505 (2008).