• Title/Summary/Keyword: Screw Compressor

Search Result 42, Processing Time 0.021 seconds

A Study on the Operating Control of a 2-Stage Heat Pump System with Screw Compressors (스크류 2단 압축 열펌프 시스템의 운전 제어 방안에 관한 연구)

  • Kim, Ji-Young;Baik, Young-Jin;Lee, Young-Soo;Ra, Ho-Sang
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.501-505
    • /
    • 2006
  • A preliminary performance test of a 30RT 2-stage screw heat pump was carried out in order to develop a high performance large-scale unutilized energy source heat pump, which will be used in district heating and cooling. Two issues on the system control were investigated in this study, A stable 2-stage heating operation is guaranteed only if the load-side water inlet temperature is over a certain value, to where the 1-stage heating operation should be done first from a cold start. An oil shortage problem in low stage compressor, which depends on the degree of suction superheat, was solved by the proper oil level control scheme.

  • PDF

The Development of Super High Speed PMSM Sensorless Vector driver for Direct Drive Method Turbo Compressor (직접 구동방식의 터보 압축기를 위한 초고속 영구자석형 동기전동기 센서리스 벡터 구동 시스템 구현)

  • 권정혁;변지섭;최중경;류한성
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.6
    • /
    • pp.879-884
    • /
    • 2002
  • There are screw, reciprocating and turbo compressor by structure in an air compressor, essential equipment on he industrial spot. Resently it is wide that the range of turbo compressor's use in gradual, turbo compressor needs high speed rotation of impeller in structure, high rated gearbox and conventional induction motor. This mechanical system increased the moment of inertia and mechanical friction loss. Resently the study of turbo compressor applied super high speed motor and drive, removing gearbox made its size small and mechanical friction loss minimum. In this study we tried to develope variable super high speed motor drive systems for 150Hp, 70,000rpm drect drive Turbo compressor. The result of study is applied to a 150Hp direct turbo compressor and makes it goods.

Design of Fly-Cutter for Antisymmetric Screw Rotor (비대칭형 스크류 로터용 플라이커터의 치형설계에 대한 연구)

  • Choi, Sang-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.1
    • /
    • pp.45-52
    • /
    • 1997
  • In this study, we designed tooth profile of the fly-cutter for antisymmetric rotor which is used in screw compressor. In order to verify this profile, we manufactured three different pairs(J46, N46, P46) of antisymmetric rotor using fly-cutter. We got the following conclusions from this study. (1) We obtained better contact condition using 3pairs of rotor which are manufactured by the fly-cutter. (2) We could prevent the cutter interference near bottom point of the robe of screw rotor.

Part-load Performance of a Screw Chiller with Economizer using R22 and R407C

  • Chang, Young-Soo;Kim, Young-Il;Lee, Yong-Chul
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • Screw compressor chillers are widely used in refrigeration for capacity over 30 RT. In general, chillers operate under part-load conditions during most of the time. Therefore, information on the characteristics of part-load is very important for better chiller performance and energy economy. In this study, performance tests of screw chiller with economizer using R22 and R407C under part-load conditions have been performed for various secondary fluid temperatures. Adoption of an economizer system increased the cooling capacity and improved COP except for lower part-load condition when economizer volume ratio is 1.01. For the same cooling capacity condition at part-load, COP's of both non-economizer and economizer system showed similar values.

Part-Load Performance Test of a Screw Chiller with Economizer using R22 and R407C (이코노마이저를 채용한 스크류 냉동기에서 R22와 R407C의 부분부하 성능실험)

  • 장영수;이용철;김영일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.11
    • /
    • pp.902-909
    • /
    • 2003
  • Screw compressor type chillers are widely used in refrigeration for capacity over 30 RT. In general, chillers operate under part-load conditions. Therefore, information on characteristics at part-load is very important in view of chiller performance and energy economy. In this study, performance tests of part-load and economizer system using R22 and R407C have been performed for various secondary fluid temperatures. Adoption of an economizer system increased the cooling capacity and improved COP except for lower part-load condition when injection volume ratio is 1.01. For the same cooling capacity condition at part-load, COP of both non-economizer and economizer system showed similar values.

Effect of the Configurations of Coolant Flow Passage on the Thermal-Flow Characteristics of Screw Compressor (스크류 압축기 냉각유로 형상 변화가 열유동 특성에 미치는 영향)

  • Cho, Sung-Wook;Seo, Hyeon-Seok;Shon, Kil-Won;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.1
    • /
    • pp.41-46
    • /
    • 2014
  • The thermal-flow characteristics of screw compressor were numerically investigated with various geometrical configurations of its coolant flow passage applied to the separate block for enhancing the heat transfer performance of it. The length ratio($L_s/D$=4.8, 5.6, 6.4) and thickness ratio(t/D=0.2, 0.4, 0.6) of the separate block in the flow passage of the water jacket were adopted to design parameters. Results showed that the pressure drop and heat transfer were increased as the length of separate block increases due to the flow separation and centrifugal force. The results were graphically depicted with various flow and geometrical conditions.

Development of a Screw Type Super-Charger for Part Load Control of Passenger Car (승용차의 부분부하제어를 위한 스크류형 과급기 개발)

  • Bea, Jae-Il;Bae, Sin-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.10
    • /
    • pp.1427-1434
    • /
    • 2003
  • Turbo- or Super-charging has been used to boost engine power for Gasoline- and Diesel Engine since beginning of 20th century. So far turbo-charger has enjoyed a high reputation in the charging field for its technical advantages such as no demand of operation power from engine and an excellent charging effect in a static operation at mid- and high engine speed. A mechanically driven super-charger, however, is now popular due to the high engine power at quick change of the driving mode - high engine torque even at low engine speed. Since super-charger needs operation power from engine, it is difficult to improve its relatively higher fuel consumption than that of turbo-charger. This negative point is still an obstacle to the wide use of supercharger. Super-charger using screw-type compressor will fulfill the purpose to reduce fuel consumption by minimizing operation power owing to no charge at idling or part load driving condition. This study aims to develop power control concept to achieve the minimization of operation power. A screw type super-charger was modified in design partially and installed with an internal bypass valve and a bypass tube to control charging pressure at part load. The various control concepts show a possibility to reduce operation power of super-charger.

A Study on performance analysis of screw rotor profiles (스크류 로터 치형의 성능해석에 관한 연구)

  • Choi, Sang-Hoon;Kim, Dong-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.1
    • /
    • pp.69-77
    • /
    • 1996
  • To design high-effective profile in screw rotor profile using in screw compressor, we design the symmetric type changing the number of lobes and the non-symmetric type changing the neighbourhood of the top point of lobe. Then, we calculated the performance value of profile according to the scale of these non-symmetric's wrap angle. We had the results as follows. 1. About the non-symmetric case, the larger a wrap angle is the shorter seal line is and the smaller blow hole is, thus we know what the large wrap angle profile is better than the small one. 2. We know what the non-symmetric profile is better than the symmetric profile in the result of the compare of seal line's length, blow hole's area, volume curve. 3. About the non-symmetric case, the deformation of the neighbourhood of lobe's top point of the rotor profile has a large effect upon the increase of performance because the length of seal line became short and the area of blow hole is small.

  • PDF

Optimization of Screw Pumping System (SPS) for Mass Production of Entrapped Bifidus

  • Ryu, Ji-Sung;Lee, Yoon-Jong;Choi, Soo-Im;Lee, Jae-Won;Heo, Tae-Ryeon
    • Food Science and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.566-571
    • /
    • 2005
  • Process of screw-pumping system (SPS) was optimized for mass production of encapsulated bifidus. SPS entrapment device was composed of feeding component, with optimized nozzle size and length of 18G (0.91 cm) and 4 mm, respectively, screw pump, and 37-multi-nozzle. Screw component had five wing turns [radius (r)=26 to 15 mm] from top to bottom of axis at 78-degree angle from middle of the screw, and two wings were positioned at screw edge to push materials toward nozzle. For nozzle component, 37 nozzles were attached to 20-mm round plate. Air compressor was attached to SPS to increase productivity of encapsulated bifidus. This system could be operated with highly viscous (more than 300 cp) materials, and productivity was higher than $1128\;{\pm}\;30\;beads/min$. Viability of encapsulated bifidus was $5.45\;{\times}\;10^8\;cfu$/bead, which is superior to that of encapsulated bifidus produced by other methods ($2.51{\times}10^8\;cfu$/bead). Average diameter of produced beads was $2.048\;{\pm}\;0.003\;mm$. Survival rate of SPS-produced encapsulated bifidus was 90% for Simulator of the Human Intestinal Microbial Ecosystem test and 88% in fermented milk (for 14 days). These results show SPS is effective for use in development of economical system for mass production of viable encapsulated bifidus.

Detailed Design for 25bar-class Biogas Compression Supplying System (25BAR급 바이오가스 고압 압축공급시스템 상세설계)

  • Hur, Kwang-Beom;Park, Jung-Keuk;Yun, Eun-Young;Lee, Jung-Bin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.173.1-173.1
    • /
    • 2011
  • The high fuel flexibility of gas turbine power system has boosted their use in a wide variety of applications. Recently, the demand for biogas generated from the digestion of organic wastes and sewage waste water as a fuel for gas turbines has increased. We investigated the performance of high pressure biogas compression system and operating conditions for supplying biogas. The total flow per minute of biogas from food waste water digestion tank is $54Nm^3$. The main type of biogas compression system is the reciprocating system and screw type system. The target of biogas mechanical data is the as belows; inlet pressure 0.045bar, supplying biogas temperature is $30{\sim}60^{\circ}C$, and final pressure is above the 25 bar. Also, inlet conditions of biogas consist of CH4 48.5%~83%, $H_2S$ Max. 500ppm, $NH_3$ Max. 1,500ppm and Siloxane 2.7~4.6ppm. The boosting Blower system raises a pressure from 0.045bar to 1bar before main compressor. The main system lay out of reciprocating consisits of compressor driver, filter, cooling system, blowdown vessel, control system and ESD(Emergency Shut Down) system. And an enclosure package needs to be installed for reducing noise up to 75dB. The system driver is the electronic motor of explosion proof type. Forthe compressor system reliable operation, the cleaning system something like particulate filter needs to be set up in the inlet of compressor and Coalescing Filter in the outlet of compressor. Particulate Filter has to be removed above $10{\mu}m$ size of the particles in biogas. The coalescing filter(Micofine Borosilicate Glass Fibers Filter treated phenol acid) also removes moisture and oil of above $0.3{\mu}m$ to be involved in high pressure biogas up to 90%~98%.

  • PDF