• Title/Summary/Keyword: Screw Air Compressor

Search Result 22, Processing Time 0.023 seconds

Experimental Study on the Performance of Screw Compressor with Various Shapes of Air End (에어엔드 형상변화에 따른 스크류 압축기 성능에 관한 실험적 연구)

  • Kim, Tae-Yoon;Lee, Jae-Young;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.1
    • /
    • pp.5-10
    • /
    • 2013
  • The performance of screw air compressor is affected by rotor profile, lobe number, air end wrap angle, rotor L/D ratio, suction and discharge ports, revolutions of air end and load regulation control, etc. In general, an efficient screw compressor needs a rotor profile of which has a large flow cross-section area, short sealing lines and a small blow-hole. In this study, experimental study was performed with newly designed $5{\times}6$ rotor profile and various shapes of air end. Results show that the measured specific power consumption of the newly designed screw compressor appeared to be lower than any other published data for the equivalent screw compressors manufactured.

Research Trend in Screw Compressor Development (스크류 압축기의 연구개발 동향)

  • Lee, Dae-Young;Kim, Youngil;Nam, Leem Woo
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.151-158
    • /
    • 1998
  • The screw compressor is first invented by a Swedish engineer, Alf Lysholm in 1934. Since then, the development of the screw compressor idea for industrial applications has been continued by the Swedish research organization Svenska Rotor Maskiner, often identified by its initials SRM. The first industrial application of the machine was marketed as an air compressor in the 1950s. The screw compressor which is a positive displacement type compressor compresses gases by the rotation of a pair of mating rotors. The operation of this compressor is entirely rotary and dynamically in balance. Also there is no need for any valve mechanism and there exists less mechanical wear between the parts compared to the conventional reciprocating compressors. Due to these prominent features, the screw compressor has been rapidly spread into the air compressor market replacing the conventional reciprocating compressors and begun to be applied as a refrigerant compressor since the 1960s. In this work, the operation principle of the screw compressor is described in brief and the major design parameters affecting the compressor performance are classified. The international research trend in screw compressor development is introduced and the current situation in our country is described.

  • PDF

Performance Analysis of Screw Air Compressor (스크류 공기 압축기의 성능해석)

  • Park, Dong-Gyu;Lee, Gwan-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.2
    • /
    • pp.184-193
    • /
    • 2002
  • This study aims at the optimal design of the screw rotor and its performance analysis. The optimal design of the screw rotor's shape has been performed theoretically. Also, the performance analysis technique of an oil-injected screw air compressor is developed. The effect of internal leakage, heat exchange between air and oil, and flow resistance at suction and discharge ports are included in the performance analysis. Some numerical examples of the volumetric efficiency and adiabatic efficiency for sample rotors are demonstrated for various lobe combination, rotor wrap angles and L/D ratios.

Design and Machining of a Screw Rotor of a Single-Screw Compressor (싱글 스크류 압축기의 스크류 로터의 설계 및 가공)

  • Kim, Doo-Hyeong;Kyung, Jin-Ho;Kim, Yoang-Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.6
    • /
    • pp.452-457
    • /
    • 2016
  • Single screw compressors are widely used in the fields of air/gas compression, refrigeration, and chemical fluid transportation systems. A single-screw compressor is composed of a screw rotor and two gate rotors located at both sides. This simple construction enables low rotational speed of the rotor, efficient compression with low noise, low vibration, and long bearing life. Despite these merits, the design method of single-screw compressors is not well known. To accelerate the industrial application of single-screw compressors, a design method using coordinate transformation is presented in this paper, and a tool trajectory is established for machining. Finally, the screw rotor, which is machined using the proposed method, is presented.

Fault Diagnosis of Screw type Air Compressor (스크루형 공기압축기의 고장진단)

  • Bae Yong-hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1092-1100
    • /
    • 2004
  • This paper describes the application of fault tree technique to analyze of compressor failure. Fault tree analysis technique involves the decomposition of a system into the specific form of fault tree where certain basic events lead to a specified top event which signifies the total failure of the system. In this research. fault trees for failure analysis of screw type air compressor are made. This fault trees are used to obtain minimal cut sets from system failure and system failure rate for the top event occurrence can be calculated. It is Possible to estimate air compressor reliability by using constructed fault trees through compressor failure example. It is Proved that FTA is efficient to investigate the compressor failure modes and diagnose system.

Review of Mathematical Models in Performance Calculation of Screw Compressors

  • Stosic, Nikola;Smith, Ian K.;Kovacevic, Ahmed;Mujic, Elvedin
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.2
    • /
    • pp.271-288
    • /
    • 2011
  • The mathematical modelling of screw compressor processes and its implementation in their design began about 30 years ago with the publication of several pioneering papers on this topic, mainly at Purdue Compressor Conferences. This led to the gradual introduction of computer aided design, which, in turn, resulted in huge improvements in these machines, especially in oil-flooded air compressors, where the market is very competitive. A review of progress in such methods is presented in this paper together with their application in successful compressor designs. As a result of their introduction, even small details are now considered significant in efforts to improve performance and reduce costs. Despite this, there are still possibilities to introduce new methods and procedures for improved rotor profiles, design optimisation for each specified duty and specialized compressor design, all of which can lead to a better product and new areas of application. A review of methods and procedures which lead to modern screw compressor practice is presented in this paper. This paper is intended to give a cross section through activities being done in mathematical modelling of screw compressor process through last five decades. It is expected to serve as a basis for further contributions in the area and as a challenge to the forthcoming generations of scientists and engineers to concentrate their efforts in finding future and more extended approaches and submit their contributions.

A Study on Machining of a Compressor Rotor using Formed Tools (총형공구를 이용한 압축기 로터 가공에 관한 연구)

  • Park S.Y.;Lim P.;Lee H.K.;Yang G.E.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1285-1288
    • /
    • 2005
  • Screw rotors, the key parts of screw compressors, are used in compressing air and refrigerant due to their high productivity, compact size, low noise and maintenance. In general, a screw compressor is composed of a pair of rotors of complex geometric shape. The manufacturing cost of the screw rotors is high because the complicated helical shapes of the screw rotors are manufactured usually by the dedicated machine tools. In this study, rotor profile is divided into three parts for the efficient machining. The formed tools are designed and shared for the respective split region. By cutting the screw rotor using the formed tools, this method is more efficient than the end mill in machining rotor. Experimental results show that 4-axis machining using formed tools needs less time and has the accuracy.

  • PDF

Experimental study on the performance improvement of a screw-compressor-type chiller (스크류 압축식 냉동기의 성능향상에 관한 실험적 연구)

  • Lee, D.-Y.;Jung, S.-H.;Kang, B.H.;Hong, H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.1
    • /
    • pp.48-60
    • /
    • 1999
  • An experimental study on the performance enhancement of a screw-compressor-type chiller with 100kW of nominal cooling capacity has been carried out. Performance test facility was developed to investigate the effects of a partial modification from the existing chiller on the performance. By replacing the existing shell-and -tube heat exchangers with plate heat exchangers, the cooling capacity is increased by 15~18% and the COP is also increased by 19~21% depending on the operation temperature range. Charging mixed refrigerant R22/R142b(80 : 20) instead of R22 into the chiller with plate heat exchangers improves the cooling capacity by 4% and the COP very largely by 30%. Each contribution of the plate evaporator, plate condenser, and mixed refrigerant to the performance enhancement is examined by analyzing the refrigeration cycle and the heat transfer processes. It is also shown that the chiller performance can be improved by adapting 2-stage-compression cycle using an economizer.

  • PDF

A Study on the Operating Control of a Heat Pump System with Screw Compressors (스크류 열펌프 시스템의 운전제어 방안에 관한 연구)

  • Park, Jun-Tark;Lee, Young-Soo;Kim, Jiyoung;Chae, Kyu-Jung;Yang, Hee-Jung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.3
    • /
    • pp.168-172
    • /
    • 2013
  • A preliminary performance test of a 30RT 2-stage screw heat pump was carried out in order to develop a high performance large-scale unutilized energy source heat pump system, which will be used for district heating and cooling. In this study, two issues of the system operating control were investigated. The first issue is the mode switching control from 1-stage to 2-stage. A stable 2-stage heating operation is guaranteed, only if the load-side water inlet temperature is over a certain value, where the 1-stage heating operation should be done first from a cold start. The second issue is oil level control. An oil shortage problem in the low stage compressor, which depends on the degree of suction superheat, was solved by a proper oil level control scheme.

Part-load Performance of a Screw Chiller with Economizer using R22 and R407C

  • Chang, Young-Soo;Kim, Young-Il;Lee, Yong-Chul
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • Screw compressor chillers are widely used in refrigeration for capacity over 30 RT. In general, chillers operate under part-load conditions during most of the time. Therefore, information on the characteristics of part-load is very important for better chiller performance and energy economy. In this study, performance tests of screw chiller with economizer using R22 and R407C under part-load conditions have been performed for various secondary fluid temperatures. Adoption of an economizer system increased the cooling capacity and improved COP except for lower part-load condition when economizer volume ratio is 1.01. For the same cooling capacity condition at part-load, COP's of both non-economizer and economizer system showed similar values.