• Title/Summary/Keyword: Screw

Search Result 2,442, Processing Time 0.023 seconds

Stress Analysis and Fatigue Failure of Prefabricated and Customized Abutments of Dental Implants (치과 임플란트에서 기성 지대주와 맞춤형 지대주의 응력분석 및 피로파절에 관한 연구)

  • Kim, Hee-Eun;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.29 no.3
    • /
    • pp.209-223
    • /
    • 2013
  • This study was to evaluate the stress distributions of prefabricated, customized abutments and fixtures according to their material and shape by three-dimensional finite element analysis. And to investigate the fatigue life and fracture characteristics. Mandibular models were fabricated by reconstruction of the CT scan of patients with normal occlusion. A total of six finite element models were designed, a load of 100 N was applied on the buccal cusps vertically, and 30 degree obliquely. 10 specimens each were fabricated for the more clinically widely used 4 type abutments and were loaded according to ISO 14801. Differences in stress distribution patterns were not found according to the materials of the abutments and fixtures. But a slight difference in the stress level was detected. Customized abutment groups showed lower crown stress levels. One-piece zirconia implant showed the lowest bone stress levels. In the fatigue test, highest values were measured in group 7. Prefabricated abutments showed less variation of fatigue life (P<0.05). Use of customized abutments can improve the fracture resistance of restorations. Especially, use of customized zirconia abutments reinforced by titanium screw connecting parts is recommended.

Effects of Fusion Level for Scioliotic Spine Correction Simulation with Pedicle Screw and Rod Derotation Method (척추경 나사못 고정과 강봉 감염술을 이용한 척추 측만증 교정 해석시 유합 범위에 따른 교정 효과 분석)

  • 김영은;손창규;최형연;하정현;이춘기
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.71-76
    • /
    • 2004
  • In order to investigate the Post-operative changes in scoliotic spine according to selection of fusion level a mathematical finite element model of King-Moe type II scoliotics spine system was developed. By utilizing this finite element scoliosis model surgical correction simulation procedures of pedicle fixation and derotation were simulated. In consequence of the calculation by changing the fusion Levels, postoperative changes like Cobb angle, apical vertebrae axial rotation (AVAR), thoracic kyphosis, and rib hump were Qualitatively analyzed. In the analysis of operative kinematics, the decrease or Cobb angle was most prominent in distraction than in deroation. Applying the rod derotation only was not effective in decrease of Cobb angle but just caused increase of At AR and rib hump. From the operative simulation, co-action or distraction and translation during rod insertion has major impact on Cobb angle decrease and maintenance of kyphosis. With rod rotation, Cobb angle decrease was obtained, but combined increase of AVAR and rib hump was simulation observed as well. The case of most extended instrumentation range with 60o rod rotation produced double decrease of Cobb angle, but the increase of rib hump and AYAR occurred corresponding1y. The optimum selection of fusion level was proved as one level less than inflection position of the thoracic spine curvature.

Effect of VI/III ratio on properties of alpha-Ga2O3 epilayers grown by halide vapor phase epitaxy (HVPE 방법으로 성장된 alpha-Ga2O3의 특성에 대한 VI/III ratio 변화 효과)

  • Son, Hoki;Choi, Ye-Ji;Lee, Young-Jin;Lee, Mi-Jai;Kim, Jin-Ho;Kim, Sun Woog;Ra, Yong-Ho;Lim, Tae-Young;Hwang, Jonghee;Jeon, Dae-Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.3
    • /
    • pp.135-139
    • /
    • 2018
  • In this study, we report the effect of VI/III ratio on ${\alpha}-Ga_2O_3$ epilayer on sapphire substrate by halide vapor phase epitaxy. The surface of ${\alpha}-Ga_2O_3$ epilayer grown with various VI/III ratios was flat and crack-free. To analyze the optical properties of the ${\alpha}-Ga_2O_3$ epilayers, the transmittance and an optical band gap were measured. The optical band gap was shown to be around 5 eV and showed a proportional increase in VI/III ratios. To determine the crystal quality of alpha gallium oxide grown with a ratio of 23, closed to the theoretical optical band gap, the FWHM was measured by HR-XRD. The calculated dislocation density of screw and edge were $1.5{\times}10^7cm^{-2}$ and $5.4{\times}10^9cm^{-2}$, respectively.

Drug Adsorption Behavior of Polyolefin Infusion Tube Compared to PVC and PU (Non-PVC(폴리올레핀) 수액용 튜브 내면에서의 약물흡착 거동 - PVC 및 PU 수액튜브와의 비교)

  • Park, Kang Hoon;Park, Chang Kyu;Park, Jong;Jeon, Seungho;Bang, Sa-Ik;Kim, Ji-Heung;Chung, Dong June
    • Polymer(Korea)
    • /
    • v.38 no.3
    • /
    • pp.333-337
    • /
    • 2014
  • PVC (polyvinyl chloride) intravenous fluid bags and tubes that contain DEHP (diethylhexyl phthalate) as a plasticizer have several associated disadvantages for intravenous injections. We investigated the drug absorption behaviors on the inner surface of an infusion tube that consisted of commercialized PVC/PU (polyurethane). We developed a non-PVC (polyolefin) tube in order to improve the efficacy of this drug administration method. We prepared four types of non-PVC (polyolefin) infusion tubes using a polyethylene (PE), polypropylene (PP), syndiotactic 1,2-polybutadiene (PB), and styrene-ethylene (SE) copolymer elastomers were prepared using a single screw extruder. The four types of manufactured non-PVC (polyolefin) infusion tubes had good mechanical properties that were equivalent to PVC tube properties. The four types of prepared non-PVC (polyolefin) infusion tubes also prohibited drug absorption when compared to the commercialized PVC and PU tubes. Therefore, based on the results of this study, prepared non-PVC (polyolefin) tubes are good candidates for infusion because they prevent drug absorption and the release of DEHP.

Physicochemical Properties of Rice Extrudate Added with Onion Kimchi Powder (양파김치 분말을 첨가한 쌀 압출팽화물의 이화학적 특성)

  • Keawpeng, Ittiporn;Kang, Seong-Koo;Park, Yang-Kyun
    • Food Science and Preservation
    • /
    • v.14 no.5
    • /
    • pp.504-510
    • /
    • 2007
  • An extrusion process was to make an onion kimchi snack from rice grit and onion kimchi powder, in an effort to enhance the nutritional value, flavor, and physicochemical properties of the extrudate. This study investigated optimum conditions (moisture content, barrel temperature, and the content of onion kimchi powder) for the production of high-quality rice extrudate products, and measured quality properties (water absorption index, texture, expansion ratio, and color) of rice extrudate to which onion kimchi powder had been added. Onion kimchi powder at 3%, 5%, 7%, and 10% (all w/w) was mixed with rice grit and the mixture then extruded in a twin-screw extruder. The texture of onion kimchi mack became softer as onion kimchi powder level rose, and water absorption ability increased. The expansion ratio and the lightness of extrudates decreased with increases in onion kimchi powder levels. The maximum water absorption index am the minimum hardness were obtained with 10% onion kimchi powder. Rice extrudate with 10% onion kimchi powder was suitable for extrusion cooking md obtained the highest score for overall acceptability by sensory evaluation.

AN EVALUATION OF THE PRIMARY IMPLANT STABILITY AND THE IMMEDIATE LOAD-BEARING CAPACITY ACCORDING TO THE CHANGE OF CORTICAL BONE THICKNESS (치밀골 두께 변화에 따른 임플랜트 1차안정성과 즉시하중부담능 평가)

  • Yi Yang-Jin;Park Chan-Jin;Cho Lee-Ra
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.2
    • /
    • pp.248-257
    • /
    • 2005
  • Statement of problem. Cortical bone plays an important role in the primary implant stability, which is essential to immediate/early loading. However, immediate load-bearing capacity and primary implant stability according to the change of the cortical bone thickness have not been reported. Purpose. The objectives of this study were (1) to measure the immediate load-bearing capacity of implant and primary implant stability according to the change of cortical bone thickness, and (2) to evaluate the correlation between them. Material and methods.48, screw-shaped implants (3.75 mm$\times$7 mm) were placed into bovine rib bone blocks with different upper cortical bone thickness (0-2.5 mm) and resonance frequency (RF) values were measured subsequently. After fastening of healing abutment. implants were subjected to a compressive load until tolerated micromotion threshold known for the osseointegration and load values at threshold were recorded. Thereafter, RF measurement after loading, CT taking and image analysis were performed serially to evaluate the cortical bone quality and quantity. Immediate load-bearing capacity and RF values were analyzed statistically with ANOVA and post-hoc method at 95% confidence level (P<0.05). Regression analysis and correlation test were also performed. Results. Existence and increase of cortical bone thickness increased the immediate load-bearing capacity and RF value (P<0.05) With the result of regression analysis, all parameter's of cortical bone thickness to immediate load-bearing capacity and resonance frequency showed significant positive values (P<0.0001). A significant high correlation was observed between the cortical bone thickness and immediate load-beating capacity (r=0.706, P<0.0001), between the cortical bone thickness and resonance frequency (r=0.753, P<0.0001) and between the immediate load-bearing capacity and resonance frequency (r=0.755, P<0.0001). Conclusion. In summary, cortical bone thickness change affected the immediate load-baring capacity and the RF value. Although RF analysis (RFA) is based on the measurement of implant/bone interfacial stiffness, when the implant is inserted stably, RFA is also considered to reflect implant/bone interfacial strength of immediately after placement from high correlation with the immediate load-baring capacity. RFA and measuring the cortical bone thickness with X-ray before and during surgery could be an effective diagnosis tool for the success of immediate loading of implant.

THE EFFECT OF VARIOUS SURFACE TREATMENT METHODS ON THE OSSEOINTEGRATION (임플랜트의 표면처리 방법이 골유착에 미치는 영향에 관한 연구)

  • Choi Jeong-Won;Kim Kwang-Nam;Heo Seong-Joo;Chang Ik-Tae;Han Chong-Hyun;Baek Hong-Gu;Choi Yong-Chang;Wennerberg Ann
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.1
    • /
    • pp.71-83
    • /
    • 2001
  • The purpose of this study was to compare the effects of various surface treatments by measuring removal torque on bone healing around titanium implants. 40 Screw-shaped cp titanium implants with length of 4mm, outer diameter of 3.75mm, and pitch-height of 0.5mm were used Group 1 was left as machined(control), Group 2 was blasted with $50{\mu}m\;Al_2O_3$, group 3 was blasted and etched in etching solution($NH_4OH : H_2O_2:H_2O= 1 : 1 : 5$) at $90^{\circ}C$ for 1 minute group 4 was blasted and oxidated under pure oxygen at $800^{\circ}C$. The implant surface roughness was analyzed with SEM and CLSM(Confocal Laser Scanning Microscope) and implants were placed in proximal tibial metaphysis of 10 New Zealand White rabbits. After 3 months of healing period, removal torque of each implant was measured to compare bone healing around implant. The results obtained were as follows 1. In SEM view, blasting increased the roughness of the surface, but etching of that rough surface decreased the roughness due to the removal of the tip of the peak. Oxidation also decreased the roughness due to formation of needle-like oxide grains on the implant surface. 2. The Sa value from CLSM was least in the machined group($0.47{\mu}m$), greatest in blasted group($1.25{\mu}m$), and the value decreased after etching($0.91{\mu}m$) and oxidation($0.94{\mu}m$). 3. The removal torque of etched group(24.5Ncm) was greater than that of machined group(16.7Ncm) (P<0.05), and was greatest in the oxidated group(40.3Ncm) and the blasted group(34.7Ncm).

  • PDF

A STRAIN GAUGE ANALYSIS OF IMPLANT-SUPPORTED CANTILEVERED FIXED PROSTHESIS UNDER DISTAL STATIC LOAD

  • Sohn, Byoung-Sup;Heo, Seong-Joo;Chang, Ik-Tae;Koak, Jai-Young;Kim, Seong-Kyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.6
    • /
    • pp.717-723
    • /
    • 2007
  • Statement of problem. Unreasonable distal cantilevered implant-supported prosthesis can mask functional problems of reconstruction temporarily, but it can cause serious strain and stress around its supported implant and surrounding alveolar bone. Purpose. The purpose of this study was to evaluate strain of implants supporting distal cantilevered fixed prosthesis with two different cantilevered length under distal cantilevered static load. Material and methods. A partially edentulous mandibular test model was fabricated with auto-polymerizing resin (POLYUROCK; Metalor technologies, Stuttgart, Swiss) and artificial denture teeth (Endura; Shofu inc., Kyoto, Japan). Two implants-supported 5-unit screw-retained cantilevered fixed prosthesis was made using standard methods with Type III gold alloy (Harmony C&B55; Ivoclar-vivadent, Liechtenstein, Germany) for superstructure and reinforced hard resin (Tescera; Ivoclar-vivadent, Liechtenstein, Germany) for occlusal material. Two strain gauges (KFG-1-120-C1-11L1M2R; KYOWA electronic instruments, Tokyo, Japan) were then attached to the mesial and the distal surface of each standard abutment with adhesive (M-bond 200; Tokuyama, Tokyo, Japan). Total four strain gauges were attached to test model and connected to dynamic signal conditioning strain amplifier (CTA1000; Curiotech inc., Paju, Korea). The stepped $20{\sim}100$ N in 25 N increments, cantilevered static load 8mm apart (Group I) or 16mm apart (Group II), were applied using digital push-pull gauge (Push-Pull Scale & Digital Force Gauge, Axis inc., Seoul, Korea). Each step was performed ten times and every strain signal was monitored and recorded. Results. In case of Group I, the strain values were surveyed by $80.7{\sim}353.8{\mu}m$ in Ch1, $7.5{\sim}47.9{\mu}m/m$ in Ch2, $45.7{\sim}278.6{\mu}m/m$ in Ch3 and $-212.2{\sim}718.7{\mu}m/m$ in Ch4 depending on increasing cantilevered static load. On the other hand, the strain values of Group II were surveyed by $149.9{\sim}612.8{\mu}m/m$ in Ch1, $26.0{\sim}168.5{\mu}m/m$ in Ch2, $114.3{\sim}632.3{\mu}m/m$ in Ch3, and $-323.2{\sim}-894.7{\mu}m/m$ in Ch4. Conclusion. A comparative statistical analysis using paired sample t-test about Group I Vs Group II under distal cantilevered load shows that there are statistical significant differences for all 4 channels (P<0.05).

A COMPARATIVE STUDY OF THE 1-PIECE AND 2-PIECE CONICAL ABUTMENT JOINT: THE STRENGTH AND THE FATIGUE RESISTANCE

  • Kwon, Taek-Ka;Yang, Jae-Ho;Kim, Sung-Hun;Han, Jung-Suk;Lee, Jai-Bong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.6
    • /
    • pp.780-786
    • /
    • 2007
  • Statement of problem. The performance and maintenance of implant-supported prostheses are primarily dependent upon load transmission both at the bone-to-implant interface and within the implant-abutment-prosthesis complex. The design of the interface between components has been shown to have a profound influence on the stability of screw joints. Purpose. The Purpose of this study was to compare the strength and the fatigue resistance of 1-piece and 2-piece abutment connected to oral implant, utilizing an internal conical interface. Material and methods. Twenty $Implatium^{(R)}$ tapered implants were embedded to the top of the fixture in acrylic resin blocks. Ten $Combi^{(R)}$(1-piece) and $Dual^{(R)}$(2-piece) abutments of the same dimension were assembled to the implant, respectively. The assembled units were mounted in a testing machine. A load was applied perpendicular to the long axis of the assemblies and the loading points was at the distance of 7mm from the block surface. Half of 1-piece and 2-piece abutment-implant units were tested for the evaluation of the bending strength, and the others were cyclically loaded for the evaluation of the fatigue resistance until plastic deformation occurred. Nonparametric statistical analysis was performed for the results. Results. Mean plastic and maximum bending moment were $1,900{\pm}18Nmm,\;3,609{\pm}106Nmm$ for the 1-piece abutment, and $1,250{\pm}31Nmm,\;2,688{\pm}166Nmm$ for the 2-piece abutment, respectively. Mean cycles and standard deviation when implant-abutment joint showed a first plastic deformation were $238,610{\pm}44,891$. cycles for the 1-piece abutment and $9,476{\pm}3,541$ cycles for the 2-piece abutment. A 1-piece abutment showed significantly higher value than a 2-piece abutment in the first plastic bending moment (p<.05), maximum bending moment (p<.05) and fatigue strength (p<.05). Conclusion. Both 1-piece and 2-piece conical abutment had high strength and fatigue resistance and this suggests long-term durability without mechanical complication. However, the 1-piece conical abutment was more stable than the 2-piece conical abutment in the strength and the fatigue resistance.

BONE RESPONSE OF THREE DIFFERENT SURFACE IMPLANTS : HISTOMORPHOMETRIC, PERIO TEST VALUE AND RESONANCE FREQUENCY ANALYSIS IN BEAGLE DOGS

  • Choi, Joon-Eon;Suh, Kyu-Won;Lee, In-Ku;Ryu, Jae-Jun;Shin, Sang-Wan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.3
    • /
    • pp.362-374
    • /
    • 2007
  • Statement of problem. The intial stability for osseointegration of implant has been an interesting factor. Especially, in the case of poor bone quality or immediately loaded implant, various strategies have been developed focusing on the surface of materials to improve implant fixation to bone. The microscopic properties of implant surfaces play a major role in the osseous healing of dental implants. Purpose. The aims of this study are to perform a histologic and histomorphometric comparison of the healing characteristics of three different surfaces and the comparison of resonance frequency analysis (RFA) values measured by $Osstell^{TM}$ and perio-test values (PTV) measured by Periotest. Material and methods. A total of 24 screw titanium implants (Dentium Co., Seoul, Korea) with 6mm in length and 3.4mm in diameter, were placed in the mandible of 4 beagle dogs. Implants were divided into three groups following the surface treatment methods: Group I is machined(control group). Group II is anodically oxidized. Group III is coated 500nm in thickness with hydroxyapatite(HA) by ion beam assisted deposition(IBAD) on the anodized oxidization. Bone blocks from 2 dogs were caught after 3 weeks of covered healing and another blocks from 2 dogs after 6 weeks. RFA values and PTV were measured right after insertion and at 3 and 6weeks. Histomorphometric analysis was made with Kappa Image Base System to calculate bone-to-implant contact (BIC) and bone area inside the threads. Pearson's correlation analyses were performed to evaluate the correlation between RFA and PTV, BIC and bone area ratio of three different surfaces at 3 and 6 weeks. Results. 1) In all surface treatment methods, the RFA values decreased and the PTV values increased until 6 weeks in comparison to initial values. 2) At 3 weeks, no significant difference was found from bone-to-implant contact ratio and bone area ratio of three different surface treatment methods(P>0.05). However, at 6 weeks, different surface treatment methods showed significantly different bone-toimplant contact ratio and bone area ratio(P<0.05). 3) In the implants with the IBAD on the anodic oxidization, significant difference was found between the 3 weeks and the 6 weeks bone area ratio(P<0.05). 4) Correlation was found between the RFA values and the bone area ratio at 3 and 6 weeks with significant difference(P<0.05). Conclusions. These results indicate that the implants with the IBAD on the anodic oxidization may have a high influence on the initial stability of implant.