• Title/Summary/Keyword: Screen Mill

Search Result 31, Processing Time 0.023 seconds

The Study of Characteristics of Cosmetic Powder by Using Various Grinding mill (화장품용 분체의 분쇄방식에 따른 특성연구)

  • Shim, Seung-Bo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.500-507
    • /
    • 2008
  • By Using various grinding mill in powder cosmetics manufacturing process; screen milt and pin mill, jet mill, properties of the powder and grinding mills were studied; talc, mica, nylon powder, silica, titanium dioxide. Besides, the experiments fur evaluation of grinding were performed by using iron oxides those are tracers. In powders of plate shape, they were grinded more vertically than horizontally at the screen mill and pin mill, although were all grinded vertically and horizontally at the jet mill. The spheric powders became the primary particles or aggregation by electrostatic interaction at the screen mill and pin mill. But, at the jet mill, they resulted the agglomeration or transformation or damage up to 2bar. Titanium dioxides became the primary particles by all grinding mill. Pin mill has an excellent result in experiments which is a change of the tone of color by grinding. From these results, suggest that the jet mill is used to pre-treat of powders of plate shape in practical cosmetic manufacturing process, and the screen mill and pin mill are used to match the color of powder cosmetics. If industrial process condition is taken into consideration, suggest that 4times of grinding is excellent on grinding effect by the screen mill, and twice grinding by the pin mill and grind air pressure of 1bar by the jet mill.

Development of Self-Controlled Screen for Canals (무동력 자동 제진기 개발)

  • Chung, Kwang-Kun;Chun, Man-Bok
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.335-338
    • /
    • 2003
  • The Self-Controlled Screen which removed canal underwear garbage in order to prevent the damage of the arable land that increased by a typhoon and a concentration precipitation was developed. A method to remove garbage let communicate the force that a water mill was run by water pressure in the canal, and occurred in a water mill to Rake, and to have walked on a screen was adopted. As a result of was designed by structure calculation, and was made, and having installed in an experimental laboratory, operation was able to know that was become smoothly well. Afterwards, It is going to test for model development of a water mill to be able to more very generate an influence and force to reach to a canal.

  • PDF

Size Reduction Characteristics of Yellow Poplar in a Laboratory Knife Mill

  • Lee, Hyoung-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.2
    • /
    • pp.166-171
    • /
    • 2016
  • Size reduction is one of the major pre-processing operations in using biomass as a source of energy or raw materials for forest products industry. The grinding characteristics of dried yellow poplar wood chips were investigated using laboratory knife mill with three different screen aperture diameters to provide the basic information for the optimizing of size reduction processes in biomass industry. Average specific energy consumptions were 0.157, 0.137, and 0.093 Wh/g for the screen aperture diameters of 5.0, 7.5, and 9.0 mm, respectively. According to the results of size distribution analysis of ground particles, the sizes of the most of ground particles were much smaller than the aperture diameters of the screens installed on knife mill used in this study.

Biological Treatment of OCC Flake in Fine Screen Rejects for Recovery of Fibrous Materials (생물학적 처리에 의한 OCC 스크린 리젝트 내 미해리분의 재활용)

  • Sung Yong Joo;Ryu Jeong-Yong;Song Bong Keun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.1 s.109
    • /
    • pp.17-24
    • /
    • 2005
  • The increase of using low grade ace, the unsorted mixed grade, as fibrous raw materials for the packaging paper results in the increment of fine screen reject owing to the strong tendency to reduce the slot width. Since the most of screen reject consists of undispersed fiber flake, the suitable treatment of the flake could increase the yield of ace recycling and decrease the amount of solid waste. In this work, the novel method combined the mild mechanical treatment by using Tumbling pulper with the biological treatment was developed and applied to the wet strength flake and the fine screen tail line reject originated from a packaging paper mill. The results showed the new method could provide much better efficiency for the disintegration of undispersed flake and for the recovery of fiber from the rejects. The application of the laboratory scaled-Pack pulper showed the possible separation technique for mill application by fractioning effectively the fiber from the treated solid waste.

A Study on Particle-Size Distribution and Collect Rate of the Oyster Shells as Breaking and Crushing (파쇄 및 분쇄를 통한 굴 패각의 입도분포와 회수율에 관한 연구)

  • Jung, Ui-In;Kim, Bong-Joo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.458-465
    • /
    • 2017
  • The purpose of the present study was to examine the method of physically processing oyster shells for use as raw material(aggregate) through experimentation. The results of the experiment found that the adequate particle size of the pulverized oyster shells should be smaller than 10mm due to their shape. Also, after considering various particle size distributions and residual rates by particle size, the study found the cutter mill to be the most suitable tool for pulverizing oyster shells. The use of a cutter mill resulted in recovery rates of 97.3%, 98.2%, and 98.9% for inner screens of 8mm, 12mm, and 20mm respectively, revealing how the increase of screen size results in slightly higher recovery rates. The experiment involving the difference between the inner screen of the cutter mill and the speed of the inverter shows that a smaller screen size and a faster inverter speed result in a lower fineness modulus, while a rise in inverter speed for an identical screen made possible the material recovery of a much lower range of particle sizes.

Taguchi's Robust Design Method for Optimization of Grinding Condition by Hammer Mill (다구치 방법을 활용한 해머밀 분쇄공정의 최적화 연구)

  • Choe, Hong-Il;Kim, Byoung-Gon;Park, Chong-Lyuck;Jeong, Soo-Bok;Jeon, Ho-Seok;Jang, Hee-Dong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.219-225
    • /
    • 2010
  • Optimal grinding condition was examined by changing only the size of screen opening with fixing other factors to produce coal fines of particle sizes required for circulating fluidized bed gasifier. At least 85 wt% of the coal particles should fall into the size range of 0.045~1.0 mm for efficient gasification. In this study, hammer mill was used to grind Chinese low rank lignite coal following grinding condition designed by Taguchi method. The analysis of signal to noise ratio showed that optimum grinding condition for the gasifier was 3 mm in primary screen size and 1.3 mm in secondary screen size on the 95% level of significance.

Development of New Feed Mill Model Applying Combined Grind System (복합분쇄 시스템을 도입한 배합사료 공장의 새로운 모델 개발)

  • 박상빈;박경규;김태욱;윤홍선
    • Journal of Biosystems Engineering
    • /
    • v.22 no.4
    • /
    • pp.439-450
    • /
    • 1997
  • Most of Korean feed mill has a pregrind system which was suitable for the processing of less number of ingredients and finished products, and good for the mash type feed product. But industries has been changed in production volume and cost, and also from mash to further processed products such as pelleted and extruded. Therefore, Korea feed industries now should change the process, especially the grinding system from the current pregrind to other grind system, but this change will cost a lot of investment and also loosing current grinding system, and should have production shut down during the construction period. To solve these problems, combined grinding system based on a new model mill has been developed. The combined grind system is combination of pregrind and postgrind system, which has the advantages of those two grind systems, and also which can allow to utilize existing pregrind system continuously without any production interruption due to new postgrind system construction. This newly developed model has been applied to the feed mill expansion project of `B`feed company in 1994, and it was very successful application and showed excellent results as we intended. The new model mill, combined grind system applied can save fixed asset investment because old pregrind system can be used as is, and also can reduce production cost and improve product quality. And the possibility of critical production shut down can be much lowered. Within this new grinding model development, multi-screen combination system has been developed for the better grinding texture quality and safer operation. This new model mill with combined grind system will be applied by most feed manufacturing plant and may enhance their production competitiveness, and the further study and development should be continued.

  • PDF

Quality and Yield Improvement Analysis of CNT Oil Sensor (CNT Oil Sensor의 특성과 수율 향상 분석)

  • Park, Jung-Ho;Lee, Eui-Bok;Lau, Vincent;Ju, Byeong-Kwon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.8
    • /
    • pp.682-685
    • /
    • 2011
  • An engine oil sensor based on multiwall carbon nanotubes was fabricated with screen printing method. Since carbon nanotubes are generally intertwined, dispersion of the carbon nanotubes in the binding agent (ethyl cellulose, a-terpineol, frit) is a key factor for large yield of engine oil sensor. By conventional dispersion method, a hand-mill method, the maximum yield was 80% at most. However, we used the hand ultrasonic, in order to increase the yield of the sensors. As a results, our engine oil sensor fabricated by the screen printing method shows excellent yield rate of 97%, when we dispersed a paste by the hand ultrasonic method.

Preparation of High-Fiber Bread with Barley Flour (보리가루를 이용한 고식이섬유 빵의 제조)

  • Cho, Mi-Kyung;Lee, Won-Jong
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.702-706
    • /
    • 1996
  • Husked barley contained 17.2% dietary fiber and naked barley contained 14.9% dietary fiber. The barley was ground in a Udy cyclotec mill having a 0.5 mm screen and sieved with a 400-mesh screen (38 m openings). Coarse material of naked barley retained by the screen, with a weight yield of 54.1%, contained 7.0% soluble dietary fiber, 13.9% insoluble dietary filer and 20.9% total dietray fiber. As the naked barley flour level increased in bread baking, the water absorption, mixing time, and loaf weight increased, but the loaf volume decreased. Barley flour was added to wheat flour at a replacement level of 10% without a large adverse effect on bread quality, and the dietary fiber content of bread was increased from 3.0% to 5.0%. The soluble dietary fiber content was not changed, but the insoluble dietary fiber content was increased during the baking process.

  • PDF

Studies on Disintegration of Korean Old Corrugated Container(KOCC) Using a Pilot Screen (파일롯 스크린을 활용한 KOCC 해리 효율 연구)

  • Lee, Tai Ju;Nam, Yun Seok;Sim, Jae Min;Ryu, Jeong Yong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.3
    • /
    • pp.14-22
    • /
    • 2016
  • Pulping is a stage that can change fibrous raw materials into pumpable slurry. Recovered paper can be defibrated to individual fibers by shear stress generated by rotation of a rotor and water. Disintegration of recovered paper is more complicated than that of chemical pulp. When disintegration of recovered paper is poor, screening and cleaning efficiency will be worse and properties of paper will also be deteriorated. Therefore, pulping is an important treatment for improvement of availability of recovered paper and process runnability. In this study, degrees of disintegration of KOCC obtained from a linerboard mill was analyzed with a pilot-scale screen. Flake removal of KOCC slurry was performed by a pilot screen. Simple pumping action gave a positive effect on disintegration of KOCC. After pumping for 10 minutes, paper strength increased without the change of water retention value and fibrillation of KOCC slurry. This phenomena can be explained by modification of hornified surface of KOCC fibers by shear stress generated by pumping. Consequently, disintegration efficiency of KOCC can be enhanced by control of retention time at pulper or an agitation power at chests of papermaking process.