• Title/Summary/Keyword: Scratch 3.0

Search Result 69, Processing Time 0.023 seconds

A Study on Nano/micro Pattern Fabrication of Metals by Using Mechanical Machining and Selective Deposition Technique (기계적 가공과 무전해 선택적 증착기술을 이용한 나노/마이크로 금속패턴 제작에 관한 연구)

  • Cho S.H.;Youn S.W.;Kang C.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1507-1510
    • /
    • 2005
  • This study was carried out as a part of the research on the development of a maskless and electroless process for fabricating metal micro/nanostructures by using a nanoindenter and an electroless deposition technique. $2-\mu{m}-deep$ indentation tests on Ni and Cu samples were performed. The elastic recovery of the Ni and Cu was 9.30% and 9.53% of the maximum penetration depth, respectively. The hardness and the elastic modulus were 1.56 GPa and 120 GPa for Ni and 1.49 GPa and 100 GPa for Cu. The effect of single-point diamond machining conditions such as the Berkovich tip orientation (0, 45, and $90^{\circ}$) and the normal load (0.1, 0.3, 0.5, 1, 3, and 5 mN), on both the deformation behavior and the morphology of cutting traces (such as width and depth) was investigated by constant-load scratch tests. The tip orientation had a significant influence on the coefficient of friction, which varied from 0.52-0.66 for Ni and from 0.46-0.61 for Cu. The crisscross-pattern sample showed that the tip orientation strongly affects the surface quality of the machined area during scratching. A selective deposition of Cu at the pit-like defect on a p-type Si(111) surface was also investigated. Preferential deposition of the Cu occurred at the surface defect sites of silicon wafers, indicating that those defect sites act as active sites for the deposition reaction. The shape of the Cu-deposited area was almost the same as that of the residual stress field.

  • PDF

A Study on Nano/Micro Pattern Fabrication of Metals by Using Mechanical Machining and Selective Deposition Technique (기계적 가공과 무전해 선택적 증착기술을 이용한 나노/마이크로 금속패턴 제작에 관한 연구)

  • Cho Sang-Hyun;Youn Sung-Won;Kang Chung-Gil
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.171-177
    • /
    • 2006
  • This study was performed as a part of the research on the development of a maskless and electroless process for fabricating metal micro/nanostructures by using a nanoindenter and an electroless deposition technique. $2-{\mu}m$-deep indentation tests on Ni and Cu samples were performed. The elastic recovery of the Ni and Cu was 9.30% and 9.53% of the maximum penetration depth, respectively. The hardness and the elastic modulus were 1.56 GPa and 120 GPa for Ni and 1.51 GPa and 104 GPa for Cu. The effect of single-point diamond machining conditions such as the Berkovich tip orientation (0, 45, and $90^{\circ}$ ) and the normal load (0.1, 0.3, 0.5, 1, 3, and 5 mN), on both the deformation behavior and the morphology of cutting traces (such as width and depth) was investigated by constant-load scratch tests. The tip orientation had a significant influence on the coefficient of friction, which varied from 0.52-0.66 for Ni and from 0.46- 0.61 for Cu. The crisscross-pattern sample showed that the tip orientation strongly affects the surface quality of the machined are a during scratching. A selective deposition of Cu at the pit-like defect on a p-type Si(111) surface was also investigated. Preferential deposition of the Cu occurred at the surface defect sites of silicon wafers, indicating that those defect sites act as active sites for the deposition reaction. The shape of the Cu-deposited area was almost the same as that of the residual stress field.

Interface Shear Strength in Half Precast Concrete Slab (반두께 P.C. 슬래브의 면내전단내력에 관한 연구)

  • 이광수;김대근;최종수;신성우
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.4
    • /
    • pp.161-168
    • /
    • 1994
  • Half-P.C. slab system is the composite structural system which utilizes precast concrete for lower portion and cast in situ concrete for upper portion slab. When the composite slab using Half P.C. slab is deformed by flexural moment, horizontal shear happened at the interface between Half P.C. slab and topping concrete. To resist horizontal shear strength a scratch method has tried. To determine ultimate interface shear strength, shear stress, and shear coefficient, high and normal strength concrete are used for topping concrete. Major variables are compressive strength of topping concrete with or without shear reinforcement, quantitative roughness of the P.C. :surface and tie or untie of the stud with welded deformed wire fabric in the P.C. member. The Icross sectional area on joints is 3,200 $cm^2$ in all specimens. Test results showed that shear stress increased, as the depth of the quantitative roughness increased. The horizontal shear strength could be resisted with safe by the quantitative roughness without shear tie. A shear coefficient determinant equation is proposed such that K = 0.025918 + 0.0068894$\cdot$R – 0.000182354${\cdot}R^2$

Plating of Cu layer with the aid of organic film on Si-wafer (유기박막을 이용한 Si기판상의 구리피복층 형성에 관한 연구)

  • Park Ji-hwan;Park So-yeon;Lee Jong-kwon;Song Tae-hwa;Ryoo Kun-kul;Lee Yoon-bae;Lee Mi-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.5
    • /
    • pp.458-461
    • /
    • 2004
  • In order to improve the adhesion properties of copper, MPS(3-mercaptopropyltrimethoxysilane) organic film were employed. The plasma pretreatment in pure He or $He/O_{2}$ mixed gas environment greatly increased adhesion force. Adhesion force was measured by scratch test with nano indenter. Microstructures and surface roughness were observed with scanning electron microscope(SEM). The characteristics of MPS layer for pretreatment were studied with flourier transform infrared spectroscope(FT-IR) and contact angle tester. The heighest adhesion was achieved in the specimen pretreated with mixed plasma and NPS coating, which was 56mN. Other specimen showed lower value by $20{\%}$ to $30{\%}$. The roughness of substrate was not affected by the bonding strength of copper plating.

  • PDF

Application of ta-C Coating on WC Mold to Molded Glass Lens

  • Lee, Woo-Young;Choi, Ju-hyun
    • Tribology and Lubricants
    • /
    • v.35 no.2
    • /
    • pp.106-113
    • /
    • 2019
  • We investigated the application of tetrahedral amorphous carbon (ta-C) coatings to fabricate a glass lens manufactured using a glass molding process (GMP). In this work, ta-C coatings with different thickness (50, 100, 150 and 200 nm) were deposited on a tungsten carbide (WC-Co) mold using the X-bend filter of a filtered cathode vacuum arc. The effects of thickness on mechanical and tribological properties of the coating were studied. These ta-C coatings were characterized by atomic force microscopy, scanning electron microscopy, nano-indentation measurements, Raman spectrometry, Rockwell-C tests, scratch tests and ball on disc tribometer tests. The nano-indentation measurements showed that hardness increased with an increase in coating thickness. In addition, the G-peak position in the Raman spectra analysis was right shifted from 1520 to $1586cm^{-1}$, indicating that the $sp^3$ content increased with increasing thickness of ta-C coatings. The scratch test showed that, compared to other coatings, the 100-nm-thick ta-C coating displayed excellent adhesion strength without delamination. The friction test was carried out in a nitrogen environment using a ball-on-disk tribometer. The 100-nm-thick ta-C coating showed a low friction coefficient of 0.078. When this coating was applied to a GMP, the life time, i.e., shot counts, dramatically increased up to 2,500 counts, in comparison with Ir-Re coating.

Thick Copper Substrate Fabrication by Air-Cooled Lapping and Post Polishing Process (공기 냉각 방식의 래핑을 이용한 구리 기판 연마 공정 개발)

  • Lee, Ho-Cheol;Kim, Dong-Jun;Lee, Hyun-Il
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.5
    • /
    • pp.616-621
    • /
    • 2010
  • New type of the base material of the light-emitting diode requires copper wafer in view of heat and electrical conductance. Therefore, polishing process of the substrate level is needed to get a nanometer level of surface roughness as compared with pattern structure of nano-size in the semiconductor industry. In this paper, a series of lapping and polishing technique is shown for the rough and deflected copper substrate of thickness 3mm. Lapping by sand papers tried air cooling method. And two steps of polishing used the diamond abrasives and the $Al_2O_3$ slurry of size 100mm considering the residual scratch. White-light interferometer proved successfully a mirror-like surface roughness of Ra 6nm on the area of $0.56mm{\times}0.42mm$.

Diamond Like Carbon Coating on WC Core Pin for Injection Molding of Zirconia Optical Ferrule (지르코니아 광페룰 사출성형용 WC 코아 핀의 Diamond Like Carbon 코팅)

  • Park, Hyun-Woo;Jeong, Se-Hoon;Kim, Hyun-Young;Lee, Kwang-Min
    • Korean Journal of Materials Research
    • /
    • v.20 no.11
    • /
    • pp.570-574
    • /
    • 2010
  • A diamond-like carbon (DLC) film deposited on a WC disk was investigated to improve disk wear resistance for injection molding of zirconia optical ferrule. The deposition of DLC films was performed using the filtered vacuum arc ion plating (FV-AIP) system with a graphite target. The coating processing was controlled with different deposition times and the other conditions for coating, such as input power, working pressure, substrate temperature, gas flow, and bias voltage, were fixed. The coating layers of DLC were characterized using FE-SEM, AFM, and Raman spectrometry; the mechanical properties were investigated with a scratch tester and a nano-indenter. The friction coefficient of the DLC coated on the WC was obtained using a pin-on-disk, according to the ASTM G163-99. The thickness of DLC films coated for 20 min. and 60 min. was about 750 nm and 300 nm, respectively. The surface roughness of DLC films coated for 60 min. was 5.9 nm. The Raman spectrum revealed that the G peak of DLC film was composed of $sp^3$ amorphous carbon bonds. The critical load (Lc) of DLC film obtained with the scratch tester was 14.6 N. The hardness and elastic modulus of DLC measured with the nano-indenter were 36.9 GPa and 585.5 GPa, respectively. The friction coefficient of DLC coated on WC decreased from 0.2 to 0.01. The wear property of DLC coated on WC was enhanced by a factor of 20.

Tribological Performance of A1203/Ni0r Coating

  • Chae, Young-Hun;Kim, Seock-Sam
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.911-918
    • /
    • 2002
  • The tribological performance of A1$_2$O$_3$/NiCr coating deposited on steel (SH45C) was investigated under lubrication. The parameters of sliding wear consist of normal load and coating thickness. Test result showed that there was no evidence of an improved bonding strength in the coating. However, the wear resistance of the A1$_2$O$_3$/NiCr coaling was significantly greater than that of the Al$_2$O$_3$ coating. It was eviclent that the residual stress for the A1$_2$O$_3$coating was higher than that of the A1$_2$O$_3$/NiCr coating from the Scratch test failure of coating. The bond coating played an important role in decreasing the residual stress. Also, it was found that the residual stress had d notable influence on the wear mechanism.

The Faulty Detection of COG Using Image Registration (이미지 정합을 이용한 COG 불량 검출)

  • JOO KISEE;Jeong Jong-Myeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.308-314
    • /
    • 2006
  • A line scan camera is applied to enhance COG(Chip On Glass) inspection accuracy to be measured a few micro unit. The foreign substance detection among various faulty factors has been the most difficult technology in the faulty automatic inspection step since COG pattern is very miniature and complexity. In this paper, we proposed two step area segmentation template matching method to increase matching speed. Futhermore to detect foreign substance(such as dust, scratch) with a few micro unit, the new method using gradient mask and AND operation was proposed. The proposed 2 step template matching method increased 0.3 - 0.4 second matching speed compared with conventional correlation coefficient. Also, the proposed foreign substance applied masks enhanced $5-8\%$ faulty detection rate compared with conventional no mask application method.

Thin layer(Overcoat) for TFT-LCD color filter (LCD용 컬러필터 보호막)

  • Kim, Myeong-Koo;Park, Joo-Hyeon;Lim, Young-Taek
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.273-273
    • /
    • 2006
  • Over the past years, a large number of acrylate polymers have been developed and the overcoat thin layer containing acrylate polymers have been used for TFT-LCD color filter. As forming thin layer using acrylate polymers, the existing acrylate polymers have some problems such as low hardness by low Tg temperature, coating uniformity and solubility in organic solvent. To solve these problems, we synthesized new polymer(Scheme.), containing olefin monomer, which has high Tg temperature, good coating uniformity and good solubility in organic solvent. The overcoat thin layer containing new polymer resulted in good coating uniformity, stain, spot, scratch, heat resistance, DOP(Degree Of Planarization) on RGB glass, transparency, hardness, adhesion, anti-chemicals(anti-acid, anti-base, anti-organic solvent), insulation and anti-humidity. Scheme. The structure of new polymer X = Olefin monomer contains ketone, ester, hydroxy, ether, halogen, nitrile, alkoxy, phenyl functional group $R_1$ and $R_2$= H or $CH_3$. Ratio=0<[1/(1+m+n)]<0.7,0.1[$\leq$[n/(1+m+n)]<0.5.

  • PDF