• Title/Summary/Keyword: Scramjet Engine

Search Result 132, Processing Time 0.022 seconds

Scramjet Engine Combustor Test with Vitiation Heater Type Supersonic Wind Tunnel (Vitiation heater 형 초음속풍동을 이용한 스크램제트 엔진 연소기의 연소시험)

  • Kang, Sang-Hun;Lee, Yang-Ji;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.586-589
    • /
    • 2009
  • Scramjet engine combustor was tested with "RAMSYS" blow down wind tunnel in Kakuda Space Center, JAXA. As a result, installation of a cavity showed larger combustion pressure than the case without a cavity. Zigzag cavity applied for the first time in this experiment, showed the largest combustion pressure and is expected to contribute to the stable and economic operation of scramjet.

  • PDF

Research Activities and Directions of Turbulent Combustion and Hydrocarbon Fuels in Scramjet Engine (스크램제트 엔진의 난류 연소 및 탄화수소 연료 연구 및 방향)

  • Choi, J.Y.;Parent, Bernard;Won, S.H.;Lee, S.H.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.330-333
    • /
    • 2008
  • Present paper introduces the research activities on fuel-air mixing and combustion of supersonic turbulent flows in scramjet combustor carried out in Aerospace Combustion and Propulsion Laboratory of the department of Aerospace Engineering of the Pusan national University. Also, an introduction will be given to the characteristics of the supercritical hydrocarbon fuel combustion in a practical scramjet engine and its numerical modeling approaches.

  • PDF

Model Scramjet Engine Design for Ground Test (지상시험용 모델 스크램제트 엔진의 설계)

  • Kang, Sang-Hun;Lee, Yang-Ji;Yang, Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.5
    • /
    • pp.1-13
    • /
    • 2007
  • Scramjet engine is one of the most promising propulsion systems for future transport. For the ground test with T4 shock tunnel, model scramjet engine is designed. Design flight Mach number is 7.6 and flight altitude is 30km. Engine intake is designed by Levenberg-Marquardt optimization method and Korkegi relation. Furthermore, cowl cut out region is installed by the rule of Kantrowitz limit. Inside the combustor, cavity type flame holder is installed. Cavity is designed by Rayleigh line relation and PSR model. Numerical analysis is performed for the design confirm.

Mach 6 Tests of Scramjet Engine with Boundary-Layer Bleeding and Two-Staged Injection

  • Kodera, Masatoshi;Tomioka, Sadatake;Kobayashi, Kan;Kanda, Takeshi;Mitani, Tohru
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.26-33
    • /
    • 2004
  • In this study, a boundary-layer bleeding and a two-staged fuel injection were applied to a scramjet engine for suppressing unstart transition and improving the thrust performance under Mach 6 flight conditions. With the boundary-layer bleeding, the engine could operate without unstart transition around at the fuel equivalence ratio of unity ($\Phi$ = 1). The thrust increment from the no fuel condition (dF) increased to 2460 N, which was about 1.4 times as large as that of the case without the bleeding and maximum in our Mach 6 tests. It was confirmed that the boundary-layer bleeding suppressed the separation during the engine operation. The two-staged fuel injection was less effective for improving the thrust performance com-pared with the single-staged one with the bleeding at Mach 6.

  • PDF

Characteristics on Combustion Mode in Dual Mode Scramjet Engine (이중모드 스크램제트 엔진의 연소모드 특성)

  • Namkoung, HyuckJoon;Shim, ChangYeul;Kim, SunYong;Lee, MinSoo;Park, JooHyon;Kim, DongHwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.330-335
    • /
    • 2017
  • Recently many studies have been made for the development of propulsion system with wide range flight from supersonic to hypersonic. Dual Mode scramjet engine as a hybrid cycle with advantage of ramjet and scramjet has one combustor. It works under the ramjet mode (subsonic combustion) and scramjet mode (supersonic combustion) respectively. In this study, Experimental results of hot firing tests of dual scramjet engine designed on the condition of Mach 3.5~6 as a flight Mach number are discussed. The tests were carried out on a ground test bench under free stream condition of Mach 6 at 27.6km altitude. In the tests, the adopted design and technological solutions were verified and efficient operation of the dual mode ramjet engine with Kerosene combustion during 5 seconds was demonstrated.

  • PDF

Conceptual Design Study on Rocket Based Combined Cycle Engine (로켓 기반 복합사이클 엔진의 개념설계)

  • Kang, Sang Hun;Lee, Yang Ji;Yang, Soo Seok
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.111-119
    • /
    • 2013
  • Conceptual design of RBCC (Rocket Based Combined Cycle) engine is performed through the thermodynamic cycle analysis. The engine is designed to take off at sea level and accelerate to Mach 8 at 30 km altitude. According to the flight speed, the engine operating modes are categorized into 3 modes : Ejectorjet (~ Mach 3), Ramjet (Mach 3~6), Scramjet (Mach 6~8). As a design result, the engine has a diameter of 1 m and a length of 6.7 m. In the prediction results, its maximum thrust is 16.5 ton. In Ramjet and Scramjet modes, design condition of the engine intake influence the engine thrust according to the flight speed.

Survey on the Core Technologies of Hydrocarbon-fueled PWR X-1 Scramjet Engine for X-51 (X-51의 PWR X-1 탄화수소 연료 스크램제트 엔진 핵심 기술 고찰)

  • Noh, Jin-Hyeon;Won, Su-Hee;Choi, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.303-306
    • /
    • 2008
  • After the successful flight test of X-43A, U.S. Airforce is developing missile-type X-51A SED (Scramjet Engine Demonstrator-Wave Rider). X-51A using PWR (Pratt and Whitney Rocketdyne) X-1 hydrocarbon fueled scramjet engine will have a ground test in 2008 and flight test in 2009. Technologies established though the X-51A program will be transferred to DARPA's Falcon program developing HTV (Hypersonic Test Vehicle)-3X and HCV (Hypersonic Cruise Vehicle). Present paper is an overview of propulsion core technologies of X-51 such as regenerative cooling of engine structures and combustion using liquid/supercritical JP-7 fuel.

  • PDF

Mach 5 Performance Verification of Free-jet Type Ground Propulsion Test Facility for Scramjet Engine Intake Test (스크램제트 엔진 흡입구 시험을 위한 자유제트형 지상추진시험설비의 마하 5 성능 검증)

  • Lee, Yang Ji;Yang, Inyoung;Lee, Kyung Jae;Oh, Jung Hwan;Choi, Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.1
    • /
    • pp.77-87
    • /
    • 2022
  • In order to perform the scramejt engine intake ground test using the Scramjet Engine Test Facility(SETF) of the Korea Aerospace Research Institute. we introduced the test availability check procedure that is generally conducted. The design process of the newly manufactured Mach 5 nozzle for the scramjet intake test was summarized, a device for checking the core flow distribution of the nozzle was explained, and the core flow test analysis results were written. Through a series of test results, it was confirmed that the intake was located in the new Mach 5 nozzle core.

Mach 5 Performance Tests of Scramjet Engine Intake Using Free-jet Type Ground Propulsion Test Facility (자유제트형 지상추진 시험설비를 사용한 스크램제트 엔진 흡입구의 마하 5 성능시험)

  • Lee, Yang Ji;Yang, Inyoung;Lee, Kyung Jae;Oh, Jung Hwan;Choi, Jin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.4
    • /
    • pp.10-20
    • /
    • 2022
  • The performance analysis test of the scramjet engine intake was conducted under the Mach 5 condition of the scramjet engine test facility, a free-jet ground test facility of the Korea Aerospace Research Institute. A pitot/static pressure rake installed at the rear of the isolator was designed and manufactured to measure the total pressure recovery rate and mass capture ratio, which are typical performance factors of the scramjet engine intake. The effect of the rake mounted at the rear of the isolator on the intake, the performance analysis measured by the rake, and the change in wall static pressure distribution according to the angle of attack were performed. Finally, the point at which the intake unstart occurred was confirmed by using the rear back pressure adjusting device, which simulates pressure rise in the combustor, and the results are summarized in this paper.

Characteristics of Performance Parameters of Dual Mode(Ramjet-Scramjet Combined) Engine Based on the Analysis of The Operating limitations (작동한계 관점에서의 이중모드(램제트-스크램제트 연합 작동)엔진의 성능 인자 특성)

  • Sung, Hong-Gye;Byun, Jong-Ryul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.393-396
    • /
    • 2006
  • This paper presents the characteristics of the performance parameters of dual mode(ramjet-scramjet combined) engine, inlet and combustor for wide range of flight Mach number, resulted from the analysis of its operating limitations. The transitional-critical flight Mach number from ramjet to scramjet and the performance of two types of combustors, such as constant pressure- and constant area- combustor, are conceptually evaluated.

  • PDF