• Title/Summary/Keyword: Sclerotinia

Search Result 183, Processing Time 0.029 seconds

Characterization of Sclerotinia sclerotiorum Isolated from Paprika

  • Jeon, Young-Jae;Kwon, Hyuk-Woo;Nam, Ji-Sun;Kim, Seong-Hwan
    • Mycobiology
    • /
    • v.34 no.3
    • /
    • pp.154-157
    • /
    • 2006
  • A fungal isolate collected from infected paprika (Capsicum annuum var. grossum) was characterized as Sclerotinia sclerotiorum based on its ability of sclerotium formation, physiological and molecular properties. When the isolate was grown on potato dextrose agar, oatmeal agar, and malt extract agar, it grew most well on PDA. Optimal temperature and pH for its growth were $25^{\circ}C$ and pH 7, respectively. The fungal isolate produced sclerotia on PDA within 10 days, and the color and shape of the sclerotia were similar to those of S. sclerotiorum. The ITS rDNA regions including ITS1 and ITS2 and 5.8S sequences were amplified using ITS1F and ITS4 primers from the genomic DNAs of the paprika isolate and other known pathogenic S. sclerotiorum isolated from different crops in Korea, and their nucleotide sequences were determined. Sequence comparison analysis showed the ITS rDNA of the paprika isolate shares 100% sequence identity with those of S. sclerotiorum isolated from red pepper, lettuce and a S. sclerotiorum isolate registered in GenBank DNA database. Neighbor joining analysis based on the ITS rDNA sequence revealed the paprika isolate has very close phylogenetic relationships with known Sclerotinia sclerotiorum isolates. This is the first report that S. sclerotiorum has been found associated with paprika rot in paprika growing countries.

Screening of Sclerotinia Rot Resistant Korean Origin Perilla (Perilla frutescens) Germplasm Using a Detached Leaf Method

  • Lee, Ho-Sun;Afroz, Tania;Jeon, Young-Ah;Sung, Jung-Sook;Rhee, Ju-Hee;Aseefa, Awraris Derbie;Noh, Jaejong;Hwang, Aejin;Hur, On-Sook;Ro, Na-Young;Lee, Jae-Eun
    • Korean Journal of Plant Resources
    • /
    • v.32 no.6
    • /
    • pp.743-751
    • /
    • 2019
  • Sclerotinia rot, caused by Sclerotinia sclerotiorum, is a devastating disease that poses a serious threat to perilla production in Korea. Identifying effective sources of resistance offers long term prospects for improving management of this disease. Screening disease resistant genetic resources is important for development of disease-resistant, new cultivars and conduct related research. In the present study, perilla germplasm were screened in vitro against S. sclerotiorum using detached leaf method. Among 544 perilla accessions, two were highly resistant (IT226504, IT226533), five were resistant (IT226561, IT226532, IT226526, IT226441, and IT226589), five were moderately resistant (IT226525, IT226640, IT226568, IT220624, and IT178655), 16 were moderately susceptible, 31 were susceptible, and 485 were highly susceptible. The resistant accessions in this study could serve as resistance donor in the breeding of Sclerotinia rot resistance or subjected to selection procedure of varietal development for direct use by breeders, farmers, researchers, and end consumers.

Biological control efficacy on Sclerotinia rot(Sclerotinia sclerotiorum) by the use of antifungal agent some Bacillus sp.

  • Hong, Yeon-Kyu;Lee, Bong-Choon;Shin, Dong-Beom;Hyun, Jong-Nae;Kang, Hang-Won;Park, Sung-Tae
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.106-107
    • /
    • 2003
  • The effect of biological control agent Bacillus sp. (BAC03-3-1, BAC03-3-2, BAC02-4) on pre- and postemergence Sclerotinia rot of perilla (Perilla frutescens var. japonica) caused by Sclerotinia sclerotiorum was determined from greenhouse field trials. The ability of this antagonist to reduce germination of sclerotia of S. sclerotiorum was also evaluated. In the greenhouse, suspension of BAC03-3-1 application as root drench of perilla, which provided as little as 10$\^$7/ cells/ $m\ell$ per gram of soil, significantly increased plant stand in pathogen-infested soil over that in the untreated control. All three isolates reduced the germination of sclerotia of S. sclerotiorum in loamy sand soils in the greenhouse. In loamy sand amended with rice bran the sclerotial germination was inversely correlated (r = -0.79) with perilla stand in the greenhouse. However, a higher rate of bacterial suspension with rice bran(Ig dwt./100g soil) than that applied with bacterial suspensions only was necessary to achieve a comparable reduction in sclerotial germination. In field study, all three isolates added to soil to provide 10$\^$7/ cells/$m\ell$ per gram significantly prevented Sclerotinia rot (73-85%) after 35 days of growth. The isolate BAC02-4, BAC03-3-1 and BAC03-3-2 gave final stands of 65 to 75, 60 to 70, and 55 to 60%, respectively. The addition of rice bran(1 %) to loamy sand in the field resulted in a 10-fold increase in propagule numbers of the three isolates within 10 days of application.

  • PDF

Pathogenicity of a sclerotia-forming fungus, Sclerotinia trifoliorum BWC98-105, to burcucumber (Sicyos angulatus) (균핵형성균 Sclerotinia trifoliorum BWC98-105의 가시박에 대한 병원성)

  • Kim, Dalsoo;Lee, Jaeho;Choi, Woobong;Hwang, Changil;Cho, Namgyu;Choi, Sang-Bong
    • Research in Plant Disease
    • /
    • v.25 no.1
    • /
    • pp.29-32
    • /
    • 2019
  • Burcucumber (Sicyos angluatus) is a representative ecosystem-disturbing plant in Korea and currently widely spread throughout the country. A sclerotia-forming fungus with moderate host selectivity, Sclerotinia trifoliorum BWC98-105, was tested in the laboratory, green house and natural habitat for its pathogenicity to burcucumber. When mycelial culture fragment was inoculated to burcucumber seedlings under the green house condition, mycelial growth was observed in the following day, and then resulted in the onset of wilting from 5 days after inoculation (DAI). Its characteristic sclerotia as a sign was observed from 7 DAI, and thus plants turned into dark-brown color at the bottom of stem of burcucumber that was eventually blighted at 14 DAI. Similar visible symptoms were observed in natural habitat. Based on the results of showing typical blight symptom to burcucumber and the sign of sclerotia, we report S. trifoliorum BWC98-105 causing stem blight against burcucumber. Its globular pellet was considered of having quite potential as a bioherbicide to control burcucumber in Korea.

Relatedness Among Indiginous Members of Sclerotinia sclerotiorum by Mycelial Compatibility and RAPD Analysis in the Jordan Valley

  • Osofee, H.;Hameed, K.M.;Mahasneh, A.
    • The Plant Pathology Journal
    • /
    • v.21 no.2
    • /
    • pp.106-110
    • /
    • 2005
  • Sclerotinia sclerotiorum attacks most of the vegetable crops in the Jordan valley. Twenty-five samples/isolates were obtained in a complete coverage of that region. They were characterized for their mycelium incompatibility, and specific gene amplified using the primer SSREV/SSFWD. All isolates gave similar single band around 278 bp. Thirteen isolates were completely incompatible with the other 12 ones. The latter ones fell into four subgroups of mycelium incompatibility. RAPD analysis using three primers (OPA-2, OPA-10, and OPA-18) clustered the 25 isolates into subgroups in agreement with their morphological separation, indicating close correlation between amplified gene(s) and the gene(s) of incompatibility. All highly virulent isolates were among the group of 13, indicating a well established genomic type pathogen in this region.

Effect of Sclerotial Distribution Pattern of Sclerotinia sclerotiorum on Colonizing Ability of Trichoderma harzianum

  • Bae, Yeoung-Seuk;Park, Kyung-Seok;Knudsen, Guy R.
    • Mycobiology
    • /
    • v.29 no.1
    • /
    • pp.54-57
    • /
    • 2001
  • Field studies were conducted over two seasons during the summers of 1997 and 1998 to investigate the effects of different spatial arrangements(random or highly aggregated) of sclerotia of Sclerotinia sclerotiorum and alginate pellet types(bran or polyethylene glycol) on colonization of sclerotia by Trichoderma spp. Treatment with alginate pellets increased the mean percentages of sclerotia colonized by Trichoderma spp. in both years. Distribution patterns of sclerotia affected the mean percentage of sclerotia colonized by Trichoderma spp. in both years, indicating that a highly aggregated distribution of sclerotia was more favorable to colonization by Trichoderma spp. The effects of the different pellet types(bran or PEG) were not siginificant in both years(P>0.05). The application of higher densities(200 pellets per 1 $m^2$) of alginate pellets resulted in higher mean percentages of sclerotia colonized by Trichoderma spp. in 1998(P<0.05), but did not in 1997.

  • PDF

Diagnosis and Integrated Management of Major Fungal Fruit Rots on Kiwifruit in Korea

  • Kim, Gyoung Hee;Koh, Young Jin
    • Research in Plant Disease
    • /
    • v.24 no.2
    • /
    • pp.113-122
    • /
    • 2018
  • Ripe rot, Botrytis storage rot and Sclerotinia rot are major fungal diseases that lead to deterioration of fruit quality in Korea. Ripe rot, which is caused by Botryosphaeria dothidea, affects harvested fruits during post-storage ripening, while Botrytis storage rot, caused by Botrytis cinerea, affects harvested fruits during cold storage, and Sclerotinia rot, caused by Sclerotinia sclerotiorum, mainly affects immature fruits on the trees. Major fungal fruit rots tend to affect yellow- and red-fleshed cultivars of kiwifruit more severely because of the sharp increase in their cultivation acreage in recent years in Korea. In this review, we summarize symptoms and epidemiological characteristics of the major fungal fruit rots and propose integrated management methods of the diseases that can be practically utilized at the farmers' orchards in order to prevent the diseases based on our research works and field experiences and the research works of others conducted during the last three decades worldwide.

The Cellulase and Pectinase Activities Associated with the Virulence of Indigenous Sclerotinia sclerotiorum Isolates in Jordan Valley

  • Asoufi, H.;Hameed, K.M.;Mahasneh, A.
    • The Plant Pathology Journal
    • /
    • v.23 no.4
    • /
    • pp.233-238
    • /
    • 2007
  • Twenty five isolates of Sclerotinia sclerotiorum were recovered from different infested fields of vegetable along the heavily cultivated crops in Jordan valley. Cellulase and pectinase activities of those isolates were detected using CMC and pectin agar media, respectively. Diameter of the clearing zones on those media represented the level of such enzymatic activities, characteristic of each isolate. The virulence of those isolates was studied using a squash (Cucurbita pipo) cultivar under a greenhouse condition. The significance of correlating the enzymatic activity with the virulence of the isolates was ascertained and discussed.

Variation in Biochemical Composition among Indian Isolates of Sclerotinia scle-rotiorum

  • Basha S. Ameer;Sarma B.K.;Singh K.P.;Singh U.P.
    • Mycobiology
    • /
    • v.34 no.3
    • /
    • pp.114-119
    • /
    • 2006
  • Biochemical variability among 20 Indian isolates of Sclerotinia sclerotiorum collected from different hosts/soil samples from different localities in India is reported. High Performance Liquid Chromatographic (HPLC) analysis of ethyl acetate fraction of culture filtrate, mycelia, sclerotia and sclerotial exudate showed $15{\sim}23$ peaks but only 11 could be identified. They were tannic, gallic, oxalic, caffeic, vanillic, ferulic, O-coumeric, chlorogenic, cinnamic, salicylic and gentisic acids. The amount of phenolic compounds varied among the culture filtrates, mycelia, sclerotia and sclerotial exudates of S. sclerotiorum.

Post-harvest Green Pea Pod Rot Caused by Sclerotinia sclerotiorum in Korea

  • Aktaruzzaman, Md.;Afroz, Tania;Kim, Byung-Sup
    • Research in Plant Disease
    • /
    • v.28 no.1
    • /
    • pp.46-50
    • /
    • 2022
  • In June 2017, in Gangneung, Gangwon Province, South Korea, green pea pods exhibited post-harvest rot symptoms. The fungus was isolated from infected pea pods and cultured on potato dextrose agar for identification. The morphological characteristics were examined, sequences of the internal transcribed spacer region and the β-tubulin (βtub) gene were analyzed, and the pathogenicity was confirmed according to Koch's postulates. The morphology, phylogenetic analysis, and pathogenicity tests confirmed that Sclerotinia sclerotiorum was the causal agent. This study reports the first case of post-harvest green pea pod rot caused by S. sclerotiorum in Korea.