Browse > Article
http://dx.doi.org/10.7732/kjpr.2019.32.6.743

Screening of Sclerotinia Rot Resistant Korean Origin Perilla (Perilla frutescens) Germplasm Using a Detached Leaf Method  

Lee, Ho-Sun (National Agrobiodiversity Center, National Institute of Agricultural Science, RDA)
Afroz, Tania (National Agrobiodiversity Center, National Institute of Agricultural Science, RDA)
Jeon, Young-Ah (International Technology Cooperation Center, Rural Development Administration)
Sung, Jung-Sook (Upland Crop Breeding, Researcher Division Department of Southern Area Crop Science, National Institute of Crop Science, RDA)
Rhee, Ju-Hee (National Agrobiodiversity Center, National Institute of Agricultural Science, RDA)
Aseefa, Awraris Derbie (National Agrobiodiversity Center, National Institute of Agricultural Science, RDA)
Noh, Jaejong (National Agrobiodiversity Center, National Institute of Agricultural Science, RDA)
Hwang, Aejin (National Agrobiodiversity Center, National Institute of Agricultural Science, RDA)
Hur, On-Sook (National Agrobiodiversity Center, National Institute of Agricultural Science, RDA)
Ro, Na-Young (National Agrobiodiversity Center, National Institute of Agricultural Science, RDA)
Lee, Jae-Eun (National Agrobiodiversity Center, National Institute of Agricultural Science, RDA)
Publication Information
Korean Journal of Plant Resources / v.32, no.6, 2019 , pp. 743-751 More about this Journal
Abstract
Sclerotinia rot, caused by Sclerotinia sclerotiorum, is a devastating disease that poses a serious threat to perilla production in Korea. Identifying effective sources of resistance offers long term prospects for improving management of this disease. Screening disease resistant genetic resources is important for development of disease-resistant, new cultivars and conduct related research. In the present study, perilla germplasm were screened in vitro against S. sclerotiorum using detached leaf method. Among 544 perilla accessions, two were highly resistant (IT226504, IT226533), five were resistant (IT226561, IT226532, IT226526, IT226441, and IT226589), five were moderately resistant (IT226525, IT226640, IT226568, IT220624, and IT178655), 16 were moderately susceptible, 31 were susceptible, and 485 were highly susceptible. The resistant accessions in this study could serve as resistance donor in the breeding of Sclerotinia rot resistance or subjected to selection procedure of varietal development for direct use by breeders, farmers, researchers, and end consumers.
Keywords
Detached leaf; Perilla frutescens; Resistance; Sclerotinia rot;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Liu, S., H. Wang, J. Zhang, B.D.L. Fitt, Z. Xu, N. Evans, Y. Liu, W. Yang and X. Guo. 2005. In vitro mutation and selection of doubled-haploid Brassica napus lines with improved resistance to Sclerotinia sclerotiorum. Plant Cell Rep. 24:133-144.   DOI
2 Maeng, J.H., Y.R. Yeong, K.S. Kim and S.Y. Ahn. 2009. Comparison of growth and yield of perilla by open field and rain shelter cultivation in east area of Gangwon. Kor. J. Hort. Sci. Techno. 27(Suppl. I):54.
3 Makino, H., Y. Furata, H. Wakushima, H. Fujii, K. Saito and Y. Kano. 2003. Anti-allergic effect of Perilla frutescens and its active constituents. Phytother. Res. 17:240-243.   DOI
4 Ma, S.J. and J.K. Lee. 2017. Morphological variation of perilla crop and their weedy types from northern and southern areas of China. Genet. Mol. Res. 16(4):gmr16039853.
5 Moon, B.J., S.H. Roh, Y.J. Son, H.S. Kang, J.P. Lee, B.S. Kim and D.S. Chung. 1998. Occurrence of gray mold rot of perilla caused by Botrytis cinerea. Korean J. Plant Pathol.14:467-472.
6 Miorini, T.J.J., Z.N. Kamvar, R. Higgins, C.G. Raetano, J.R. Steadman and S.E. Everhart. 2018. Variation in pathogen aggression and cultivar performance against Sclerotinia sclerotiorum in soybean and dry bean from Brazil and the U.S. Peer J. Preprints 6: e26622v1.
7 Mwangi, E.W., S. Marzougui, J.S. Sung, E.C. Bwalya, Y.M. Choi and M.C. Lee. 2019. Assessment of genetic diversity and population structure on Kenyan sunflower (Helianthus annus L.) breeding lines by SSR markers. Korean J. Plant Res. 32(3):244-253.   DOI
8 Vuong, T.D., D.D. Hoffman, B.W. Diers, J.K. Miller, J.R. Steadman and G.L. Hartman. 2004. Utilization of the cut stem inoculation method to evaluate soybean, dry bean, and sunflower for resistance to Sclerotinia sclerotiorum. Crop Sci. 44:777-783.   DOI
9 Naher, N., S. Shamsi, M.R. Ali and A.M. Bashar. 2018. Screening of Sclerotinia stem rot resistance in Bangladesh mustard germplasm using cotyledon assay method. Dhaka Univ. J. Biol. Sci. 27:85-92.   DOI
10 The Korean Society of Plant Pathology. 2009. List of plant diseases in Korea, fifth edition Seoul. The Korean Society of Plant Pathol. p. 89.
11 Woo, S.Y., K.J. Sa and J.K. Lee. 2016. Collection and evaluation of genetic variation of perilla accessions in the Jeju Island. Plant Breed. Biotech. 4(1):87-98.   DOI
12 Wu, J., Q. Zhao, Q. Yang, H. Liu, Q. Li, X. Yi, Y. Cheng, L. Guo, C. Fan and Y. Zhou. 2016. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus. Sci. Rep. 6:19007.   DOI
13 Assefa, A.D., Y.J. Jeong, D.J. Kim, Y.A. Jeon, H.C. OK, H.J. Beak and J.S. Sung. 2018. Characterization, identification, and quantification of phenolic compounds using UPLC-QTOF-MS and evaluation of antioxidant activity of 73 Perilla frutescens accessions. Food Res. Int. 11:153-167.
14 Yang, S.Y., C.O. Hong, H. Lee, S.Y. Park, B.G. Park and K.W. Lee. 2012. Protective effect of extracts of Perilla frutescens treated with sucrose on tert-butyl hydroperoxide-induced oxidative hepatotoxicity in vitro and in vivo. Food Chem. 133:337-343.   DOI
15 Yin, X., B. Yi, W. Chen, W. Zhang, J. Tu, W.G.D. Fernando and T. Fu. 2010. Mapping of QTLs detected in a Brassica napus DH population for resistance to Sclerotinia sclerotiorum in multiple environments. Euphytica 173:25-35.   DOI
16 Yun, H.Y., Y.H. Kim, S.G. Hong and K.J. Lee. 2007. First Description of Coleosporium plectranthi causing perilla rust in Korea. Plant Pathol. J. 23:7-12.   DOI
17 Afroz, T., H.S. Lee, Y.A. Jeon, J.S. Sung, J.H. Rhee, D.A. Awraris, J. Noh, A. Hwang, O.S. Hur, N.Y. Ro, J.E. Lee and M.C. Lee. 2019. Evaluation of different inoculation methods for screening of Sclerotinia rot and Phytophthora blight in perilla germplasm. J. Crop Sci. Biol. 22:177-183.   DOI
18 Asif, M. 2011. Health effects of omega-3, 6, 9 fatty acids: Perilla frutescens is a good example of plant oils. Orien. Pharm. Exp. Medi. 11:51-59.   DOI
19 Bolton, M.D., B.P. Thomma and B.D. Nelson. 2006. Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen. Mol. Plant Pathol. 7:1-16.   DOI
20 Banno, N., T. Akihisa, H. Tokuda, K. Yasukawa, H. Higashihara, M. Ukiya and H. Nishino. 2014. Triterpene acids from the leaves of Perilla frutescens and their antiinflammatory and antitumor-promoting effects triterpene acids from the leaves of Perilla frutescens. Biosci. Biol. Biochem. 8451(1):85-90.
21 Choi, Y.J., H.D. Shin and M. Thines. 2009. Two novel Peronospora species are associated with recent reports of downy mildew on sages. Mycol. Res. 113:1340-1350.   DOI
22 Zhang, T., S. Zhao, W. Li, L. Ma, M. Ding, R. Li and Y. Liu. 2014. High-fat diet from perilla oil induces insulin resistance despite lower serum lipids and increases hepatic fatty acid oxidation in rats. Lip. Health Dis. 13(15):1-9.
23 Zhao, J. and J. Meng. 2003. Genetic analysis of loci associated with partial resistance to Sclerotinia sclerotiorum in rapeseed (Brassica napus L.). Theor. Appl. Genet. 106:759-764.   DOI
24 Zhao, J., J.A. Udall, P.A. Quijada, C.R. Grau, J. Meng and T.C. Osborn. 2006. Quantitative trait loci for resistance to Sclerotinia sclerotiorum and its association with a homeologous non-reciprocal transposition in Brassica napus L. Theor. Appl. Genet. 112:509-516.   DOI
25 Boland, G.J. and R. Hall. 1994. Index of plant hosts for Sclerotinia sclerotiorum. Can. J. Bot. 16:93-108.
26 Chen, W. 2007. Detection of QTLs for six yield related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. Theor. Appl. Genet. 115:849-858.   DOI
27 Chen Y. and D. Wang 2005. Two convenient methods to evaluate soybean for resistance to Sclerotinia sclerotiorum. Plant Dis. 89:1268-1272.   DOI
28 Cho, C.T. and B.J. Moon. 1994. Sclerotinia rot of perilla caused by Sclerotinia sclerotiorum (Lib.) de Bary and its new host. Res. Bull. Ins. Agric. Resour. Dong. A Uni. 3:11-24.
29 Del Rio, L.E., N.C. Kurtzweil and C.R. Grau. 2001. Petiole inoculation as a tool to screen soybean germ plasm for resistance to Sclerotinia sclerotiorum. Phytopathol. 91:176.
30 Eckert, G.P., C. Franke, M. Noldner, O. Rau, M. Wurglics, M. Schubert-Zsilavecz and W.E. Muller. 2010. Plant derived omega-3-fatty acids protect mitochondrial function in the brain. Pharmacol. Res. 61:234-241.   DOI
31 Frankel, O.H. 1977. Natural variation and its conservation: In Muhammed, A. and R.C. von Botstel, (eds.), Genet. Divers. Plants. Plenum Press, New York, USA. pp. 21-24.
32 Grau, C.R. and H.L. Bissonette. 1974. Whetzelinia stem rot of soybean in Minnesota. Plant Dis. Rept. 58:693-695.
33 Hartman, G.L., M.E. Gardner, T. Hymowitz and G.C. Naidoo. 2000. Evaluation of perennial Glycine species for resistance to soybean fungal pathogens that cause Sclerotinia stem rot and sudden death syndrome. Crop Sci. 40:545-549.   DOI
34 Godoy, M., F. Castano, J. Re and R. Rodriguez. 2005. Sclerotinia resistance in sunflower genotypic variations of hybrids in three environment of Argentina. Euphytica 145:147-154.   DOI
35 Ha, T.J., J.H. Lee, M.H. Lee, B.W. Lee, H.S. Kwon, C.H. Park, K. Shim, H. Kim, I. Baek and Jang D.S. 2012. Isolation and identification of phenolic compounds from the seeds of Perilla frutescens (L.) and their inhibitory activities against ${\alpha}$-glucosidase and aldose reductase. Food Chem. 135(3):1397-1403.   DOI
36 Korean Statistical Information Service (KOSIS), Crop Production Survey, 2018. http://kosis.kr/eng/statisticsList/statisticsListIndex.do?menuId=M_01_01&vwcd=MT_ETITLE& parmTabId=M_ 01_01&statId=1962008&themaId=#101_F1H.3 [Retrieved July 20, 2019].
37 Kull, L.S. 2003. Evaluation of Resistance Screening Methods for Sclerotinia stem rot of soybean and dry bean. Plant Dis. 87:1471-1476.   DOI
38 Lee, A.Y., M.H. Lee, S. Lee and E.J. Cho. 2017. Alphalinolenic acid from perilla frutescens var. japonica oil protects A${\beta}$-induced cognitive impairment through regulation of APP Processing and A${\beta}$ degradation. J. Agric. Food Chem. 65(49):10719-10729.   DOI
39 Lee, H.B., C.J. Kim and H.Y. Mun. 2009. First report of stem blight on perilla (Perilla frutescens) caused by Corynespora cassiicola in Korea. Plant Dis. 93:550.
40 Lee, J.K. and O. Ohnishi. 2003. Genetic relationships among cultivated types of Perilla frutescens and their weedy types in East Asia revealed by AFLP markers. Gen. Res. Crop Evol. 50:65-74.   DOI
41 James, M.J., R.A. Gibson and L.G. Cleland. 2000. Dietary polyunsaturated fatty acids and inflammatory mediator production. The American J. Clin. Nutrition 71(S):343-348.   DOI
42 Kim, E.J., K.J. Sa and J.K. Lee. 2011. Morphological characteristics between the two cultivated types of perilla crop and their weedy types. The Korean Society of Breed. Sci. 4(1):56.
43 Kim, H.S. and B.W. Diers. 2000. Inheritance of partial resistance to Sclerotinia stem rot in soybean. Crop. Sci. 40:55-61.   DOI
44 Kim, M., J.H. Nam, D.H. Oh and Y. Park. 2010. Erythrocyte ${\alpha}$-linolenic acid is associated with the risk for mild dementia in Korean elderly. Nutrition Res. 30(11):756-761.   DOI
45 Kim, W.G., B.D. Lee, W.D. Cho and D.B. Shin. 2001. Anthracnose of perilla caused by Colletotrichum spp. and Glomerella cingulata. Plant Pathol. J. 17:236-241.
46 Guixiang, Z., T.D. Etherton, K.R. Martin, S.G. West, P.J. Gillies and P.M. Kris-Etherton. 2004. Human nutrition and metabolism dietary ${\alpha}$-linolenic acid reduces inflammatory and lipid cardiovascular risk factors in hypercholesterolemic men and women. The J. Nutrition 134(11):2991-2997.   DOI