• Title/Summary/Keyword: Scientifically gifted student

Search Result 40, Processing Time 0.025 seconds

The Effects of Ill-Structured Problem Solving Program on the Social Self-efficacy, Democratic Citizenship, and Meta-cognition of the Scientifically Gifted High School Students (비구조화된 문제해결 프로그램이 고등학교 과학영재의 사회적 자기효능감, 민주시민의식 및 메타인지에 미치는 영향)

  • Yoo, Hwa-Su;Yoo, Mi-Hyun;Park, Ki-Su
    • Journal of Gifted/Talented Education
    • /
    • v.25 no.6
    • /
    • pp.837-856
    • /
    • 2015
  • The purpose of this study was to examine the effects of ill-structured problem solving program on the social self-efficacy, democratic citizenship, and meta-cognition of the scientifically gifted high school students and provide an opportunity to consider how to improve students' social self-efficacy, democratic citizenship, and meta-cognition when comprehensive character education has been emphasized in science programs for gifted students. The subjects consisted of 17 students(10th graders) and 19 students(11th graders) who were participated in a science gifted program in a Korean high school located in Seoul and pre-examination on their social self-efficacy, democratic citizenship, and meta-cognition was conducted. After applying 12-class-time of ill-structured problem solving program, post-examination on their social self-efficacy, democratic citizenship, and meta-cognition was conducted and student's self-essay about program was also conducted. Paired t-test was used to analyze the data collected and students's self-essays were also analyzed. The results of this study were as follows: First, the findings showed that ill-structured problem solving program developed students' social self-efficacy and especially showed a significant improvement in asking for help. Second, they also showed that ill-structured problem solving program raised students' democratic participation especially in a democratic function. Third, in terms of meta-cognition, ill-structured problem solving program also played a positive role. The result of analyzing students' essays also showed students' positive perception on the program. The findings of the present study suggested that ill-structured problem solving program should be taken into consideration when developing a science program for scientifically gifted high school students.

Development and Application about Program for Enlightened and Productive Creativity by Using Moire Pattern (무아래 패턴을 이용한 깨달음과 생산적 창의성 신장 프로그램 개발과 적용)

  • Yuk, Keun-Cheol;Kim, Yong-Guk;Cramond, Bonnie
    • Journal of Gifted/Talented Education
    • /
    • v.17 no.1
    • /
    • pp.193-213
    • /
    • 2007
  • We present a creative program model for encouraging the creative ability of gifted students by using overlapped patterns found in every day life. This model is based on the basic concept that the purpose of physics education is enlightenment from around the world. Combining both the Western perspective of creativity as productivity and the Eastern perspective of creativity as enlightenment, a Program for Enlightened and Productive Creativity(PEPC) for teaching inquiry was devised. This Program for Enlightened and Productive Creativity describes stages through which a student is guided to solve a problem using increasingly complex observation, inquiry, and experimentation. The use of this model in teaching is illustrated through a physics lesson of moire patterns using overlapping patterns found in our every day life. A case is made that PEPC can be applied to teaching general students as well as gifted students and in different content areas. PEPC model is applied to general students in middle school, scientifically gifted students and physics teachers.

Development of the Scientific Creativity Task for a Field Trip to Botanical Garden - Application to Science-Gifted Elementary Students - (식물원 야외체험학습에서 활용 가능한 과학 창의성 과제 개발 - 초등과학영재학생에의 적용 -)

  • Kim, Minju;Kim, Hyunju;Lim, Chaeseong
    • Journal of Korean Elementary Science Education
    • /
    • v.39 no.4
    • /
    • pp.506-521
    • /
    • 2020
  • This study aims to develop a scientific creativity task which science-gifted elementary students can conduct on a field trip to a botanical garden, and to analyze the results from conducting the task. For this, 38 science-gifted fifth-graders from the Science-Gifted Education Center, located at the Office of Education, participated in a field trip to a botanical garden, as a part of their program. Prior to the program, researchers developed a scientific creativity task for outdoor education program, along with science education specialists and teachers. The tasks were to observe plants, and to create something new and useful, or, in other words, scientifically creative, based on the plants' characteristics. The students could submit at most three ideas. Also, they assessed their own ideas, and selected an idea that they thought was the most creative. The results were analyzed by using the scientific creativity formula. The main findings from this study are as follows. First, it was found that the scientific creativity formula had an upward bias in assessing originality. Second, the students tended to assess the usefulness of their own ideas more generously. Third, the correlation between self-assessment results and scores from the scientific creativity formula for originality was r=.43. Fourth, in formula-based assessments, the correlation between originality scores and usefulness scores was relatively high, at r=.56. Fifth, the correlation between a student's scientific creativity score and the number of his or her ideas was very low, at r=.23. Sixth, when the ideas chosen as the most creative by students were compared with the ideas that had the highest scores in formula-based assessments, it was shown that 8 out of 19 students (42.1%) did not choose the idea that appeared to be the most creative when graded by the formula. This study is concluded by discussing the lessons from the scientific creativity task analysis for primary science education and gifted education.

Analysis of Selection Items Test for Selecting Scientifically Gifted Students in Chemistry Class (과학영재 선발을 위한 선발문항 분석: 서울대학교 과학영재센터 중학교 심화과정의 화학영역 중심)

  • Choi, Chui-Im;Jung, Min-Soo;Hong, Hun-Gi;Chae, Hee K;Jeong, Dae-Hong
    • Journal of the Korean Chemical Society
    • /
    • v.52 no.3
    • /
    • pp.295-302
    • /
    • 2008
  • In this study, the test that were used in entrance examination for chemistry class in a Science-Gifted Education Center for middle school students were analyzed by using criteria for identification and measurement of scientific giftedness and a classical test theory. The result of analysis exhibited that most of problems measured more than two elements of scientific giftedness and required applications of scientific knowledge of middle school level to solve problems. In the analysis of sub-elements of scientific giftedness, originality, fluency in creativity and finding problems/formulating hypothesis, planning inquiry, interpreting data in science process skills were dominant while drawing conclusion and generalization processes were lacking. In correlation analysis between total score and each type of problems, total score was most influenced by the problems measuring science inquiry linked with scientific knowledge. Item difficulty is moderately high and item discrimination is moderate.

An Analysis of the Type of Rebuttal in Argumentation among Science-Gifted Student (과학영재의 논증 활동에서 나타나는 반박 유형 분석)

  • Han, Hye-Jin;Lee, Tae-Hoon;Ko, Hyun-Ji;Lee, Sun-Kyung;Kim, Eun-Sook;Choe, Seung-Urn;Kim, Chan-Jong
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.4
    • /
    • pp.717-728
    • /
    • 2012
  • The purpose of this study is to analyze the argumentation of gifted students in the perspective of rebuttal. Rebuttal is a significant indicator of argumentation quality; it is also an essential component for science learning through interaction. However, most previous research point out insufficient use of rebuttal in student's argumentation. The argumentation of 37 8th grade students, enrolled in institutes for the scientifically gifted in Seoul, are observed and recorded for 4 hours. The argumentation topic is about how to measure the brightness of the sun. Based on Verheij's (2005) five types of rebuttal patterns, the features of rebuttal are analyzed. It is found that students' argumentation include all of the five rebuttal types: rebuttal of the data, the claim, the warrant, warrant's applicability, and connection between data and claim. It is also found that these five types can be categorized in two groups. The first group consists of first three types and is characterized by the disagreement with the validity of what has been said. The second group consists of the last two types and is characterized by the suggestion or additional information for missing links in argumentation.

Development and Application of Instructional Module for the Conceptual Change of the Earth and Moon's Movement in the Elementary Science Class (초등 과학수업에서 지구와 달의 운동 개념변화를 위한 수업모듈의 개발 및 적용)

  • Son, Junho;Kim, Jonghee
    • Journal of Science Education
    • /
    • v.34 no.1
    • /
    • pp.58-71
    • /
    • 2010
  • The purpose of this study is to categorize preconceived notions by elementary science gifted students about the reason why only one side of the moon is visible and develop an instructional module to correct these notions scientifically. The effectiveness of these modules will then be tested. The participants of this study were 15 (5th and 6th grade students) from Gwangju Metropolitan City and Chonnam Province who passed a gifted student assessment test developed by J university. The student's notions about the reason only one side of the moon is visible were assessed through questionnaires, interviews, and reenactments. Instructional modules to minimize these notions were developed and then improved upon by class reenactments. And then these modules were used to teach a real class with cameras recording the students. Protocols were analyzed using this footage, and emphasis was placed on how the developed class module changed student's misconceptions. The instructional module developed in this study was: student conception assessment writing materials exploration activity stage 1 (moon's orbit) exploration activity stage 2 (moon's rotation) - exploration activity stage 3 (moon's orbit and rotation) - exploration activity stage 4 (verbalizing the moon's orbit and rotation) - exploration activity stage 5 (thinking about moon movement considering earth's rotation - exploration activity stage 6 (relating the earth and moon's movement) and verifying student conception change. An important conclusion of this study was that all 15 students had misconceptions that could be divided into categories A, B, and C. Category A could be separated with more specifics into A-1 and A-2, and C into C-1 and C-2. After the instructional module was utilized, the student categories show positive change in the following stages: Category A at exploration activity stage 1 and 2, Category B at exploration activity stage 3, Category C-1 at exploration activity stage 4 and 5, and Category C-2 at exploration activity stage 6. Category C-1 students immediately changed to Category C-2 after going through a few stages, and their misconceptions were finally corrected after going through exploration activity stage 6. The misconceptions of students in all categories were corrected scientifically after completing stage 6 education. This study proposes that a combined education of reenactments, exploration materials development, and exploration activities by stages will effectively correct misconceptions about the Earth and moon's movement.

  • PDF

Investigation of Mental Models about Tide for Scientifically Talented Middle School Students by Analyzing Facet of Conceptual Types by Context (상황에 따른 개념 유형의 국면 분석을 통한 중학교 과학 영재아들의 조석에 관한 정신모형 탐색)

  • Lee, Ki-Young
    • Journal of the Korean earth science society
    • /
    • v.27 no.1
    • /
    • pp.6-14
    • /
    • 2006
  • The study investigates mental models of scientifically gifted, middle school students when it comes to tides. This was done by analyzing facet of conceptual types for two contexts. We carried out two performance tasks of tide with different context. A large number of students showed different conceptual types by context. As a result of analyzing facet of conceptual types by context, there was a slight difference in content-specific facet, but a remarkable one in strategic facet. We classified four mental models about tide by configuring facets of conceptual types: (1) Tide model (2) Force model (3) Phase model (4) Hybrid model. The Tide model is scientifically accepted model, but Force model and Phase model are incorrect models, and Hybrid model is mixed model. In cases of Force model and Phase model, conceptual types concur with each other, but these types of students comprehend tides as a result of joined forces of Moon & Sun and phase change of Moon, respectively. Arranging low mental models in proportional order, Tide model (45.0%), Hybrid model (30.0%), Force model (12.5%), and Phase model (7.5%).

A Study about the Perception of Scientifically Gifted Students Regarding a Program for Gifted, Based on Autonomous Learner Model (자율학습자 모형에 기반한 영재교육 프로그램에 대한 과학영재 학생들의 인식 연구)

  • Choe, Seung-Urn;Kim, Eun-Sook;Chun, Mi-Ran;Yu, Hee-Won
    • Journal of Gifted/Talented Education
    • /
    • v.22 no.3
    • /
    • pp.575-596
    • /
    • 2012
  • Students' perception on a science program for gifted was investigated. The whole program was designed in consistency and integrity based on the Autonomous Learner Model suggested by Betts & Kercher(1999). 7th, 8th and 9th grade students were enrolled in this program, offered by G Education Institute for Gifted(GEI) located in Seoul. A survey was done to ask students' perception regarding the effect of the program. The survey consisted of statements about the expected effects of the program and students were asked if they agreed with the statements. Most students strongly agreed that GEI's program has positive effects. Students replied that they learned useful and interesting science contents, enjoyed meaningful experience of cooperating with members in small groups, and were challenged by the inquiry tasks. They recognized that they were being trained to become autonomous learners. They also said that their choices and decisions were respected, which resulted in positive effects on their ability to negotiate or to inquire actively. These implies that Autonomous Learner Model had been successfully applied. Although it was not clear autonomy of students was fully grown, the possibility of becoming an autonomous learner was evident. Satisfaction level is higher for the older students, implying that the integrity in the program gave accumulating effect. Students response showed that three sub-programs of GEI, the classes of each subject, conference at the end of the year and autonomous learner training played equally important role for students to learn the process of scientific inquiry and autonomous learning. This was a positive sign that the strategies for scientific inquiry and autonomous learning were embedded and integrated deeply in the program. The results of current research suggests that the integrity of a program based on a specific education model for the gifted could provide better education environment for the gifted students.

Understanding Problem-Solving Type Inquiry Learning and it's Effect on the Improvement of Ability to Design Experiments: A Case Study on Science-Gifted Students (문제해결형 탐구학습에 대한 인식과 학습이 실험 설계 능력에 미친 효과 : 과학 영재학생들에 대한 사례 연구)

  • Ju, Mi-Na;Kim, Hyun-Joo
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.2
    • /
    • pp.425-443
    • /
    • 2013
  • We developed problem-solving type inquiry learning programs reflecting scientists' research process and analyzed the activities of science-gifted high school students, and the understanding and the effects of the programs after implementation in class. For this study, twelve science-gifted students in the 10th grade participated in the program, which consisted of three different modules - making a cycloidal pendulum, surface growth, and synchronization using metronomes. Diet Cola Test (DCT) was used to find out the effect on the improvement of the ability to design experiments by comparing pre/post scores, with a survey and an interview being conducted after the class. Each module consisted of a series of processes such as questioning the phenomenon scientifically, designing experiments to find solutions, and doing activities to solve the problems. These enable students to experience problem-solving type research process through the program class. According to this analysis, most students were likely to understand the characteristics of problem-solving type inquiry learning programs reflecting the scientists' research process. According to the students, there are some differences between this program class and existing school class. The differences are: 'explaining phenomenon scientifically,' 'designing experiments for themselves,' and 'repeating the experiments several times.' During the class students have to think continuously, design several experiments, and carry them out to solve the problems they found at first. Then finally, they were able to solve the problems. While repeating this kind of activities they have been able to experience the scientists' research process. Also, they showed a positive attitude toward the scientists' research by understanding problem-solving type research process. These problem-solving type inquiry learning programs seem to have positive effects on students in designing experiments and offering the opportunity for critical argumentation on the causes of the phenomena. The results of comparing pre/post scores for DCT revealed that almost every student has improved his/her ability to design experiments. Students who were accustomed to following teacher's instructions have had difficulty in designing the experiments for themselves at the beginning of the class, but gradually, they become used to doing it through the class and finally were able to do it systematically.

Scientifically Talented Students' Image of Science Museums and Their Preferred Topics for Exhibits - Focused on Students in Gwangju City - (과학 우수아의 과학관에 대한 이미지와 기대 전시 내용 - 광주지역 학생을 중심으로 -)

  • Kim, Jinkuk;Park, Jongwon
    • Journal of The Korean Association For Science Education
    • /
    • v.33 no.7
    • /
    • pp.1431-1449
    • /
    • 2013
  • This study is based on the assertion that science museums should consider visitors' views and expectations as they are not satisfied in many cases. In this study, we investigated 31 scientifically gifted students and 177 science high school students about their image of science museums. Using the questionnaire, it was found that only 51% of students visited science museums; however, the average number of visits was 4.2. This means that students tended to re-visit after the first visit of the science museum. Students had a 'good' image of science museums when they incurred hands-on experiences and observed new, interesting, curious and funny exhibits. And students had a 'bad' image of science museums due to the following aspects: lack of new and interesting exhibits, information and guide, diverse contents, and hands-on experience; deficiencies in environment; and inadequacy of the management, operation and composition of exhibits. Therefore, they hoped that science museums will provide more hands-on experiences and experiments, new and interesting exhibits, systematic management and composition of exhibits, information and guides, and a good environment. So science museums need to pay special attention to aspects like management, information guides and environment for the first-time visitors. Based on the above results, we suggested "Directions for a good science museum based on students' views". While asking students what topics they wanted to know and learn in a science museum, each student was given the choice of four topics; eventually, 2.9 answers overlapped for each topic. When classifying students' topics into four main themes for the Gwangju National Science Museum, the order from the most popular theme to the least one was 'science in everyday life', 'ocean/space/future science', 'light and science', and 'culture, art and science'. Among the topics mentioned by students, only 37% are exhibited in Seoul, Gwacheon, Daejeon, or Gwangju science museums. We hope that the results and research methods will be used for evaluation, re-construction, and reinvigorated presentation of science museums.