• Title/Summary/Keyword: Scientifically Gifted Elementary Student

Search Result 20, Processing Time 0.022 seconds

Teacher's Perception of Influence of Behavioral Characteristics of Scientifically-Gifted Students on General Students in Elementary School Science Classes (초등학교 과학 수업에서 과학영재 학생의 행동 특성이 일반 학생에게 미치는 영향에 대한 교사의 인식)

  • Yun, Suhjung;Kang, Hunsik
    • Journal of Korean Elementary Science Education
    • /
    • v.39 no.3
    • /
    • pp.353-368
    • /
    • 2020
  • This study analyzed the teacher's perception for influence of behavioral characteristics of scientifically-gifted students on general students in elementary school science class. To do this, we selected the eight elementary school teachers who were conducting the regular science classes including scientifically-gifted students belonging to the gifted education institutes in Seoul and conducted individual in-depth interviews. The analysis of the results reveal that the teachers mentioned seven behavioral characteristics of scientifically-gifted students in general elementary school science classes.: 'excellent in designing and performing experiments', 'playing a leading role in experiments', 'expressing their abundant prior knowledge frequently', 'attempting their tasks with curiosity and persistence', 'displaying scientific creativity', 'often asking scientific questions in detail', and 'expressing their opinions logically'. These behavioral characteristics of scientifically-gifted students had positive effects on general students, such as 'providing them with a successful experience in conducting experiments', 'improving understanding of science class contents', 'developing scientific thinking and reflective thinking', and 'improving their students' positive experiences about science'. However, the excessive learning-driven behaviors of scientifically-gifted students had negative effects on general students, such as 'limiting opportunities for general students to participate in classes', 'conducting passive exploration centered on results', and 'causing conflicts with general students'. Educational implications of these findings are discussed.

A Case Study on the Scientifically-Gifted Students' and Average Student's Creative Science Problem Solving Processes and Skills (과학 영재 아동과 일반 아동의 창의적 과학 문제 해결 과정에 대한 사례 연구)

  • Shim, Hye-Jin;Jang, Shin-Ho
    • Journal of Korean Elementary Science Education
    • /
    • v.25 no.spc5
    • /
    • pp.532-547
    • /
    • 2007
  • The purposes of this study were to investigate the creative science problem solving (CSPS) process amongst scientifically-gifted students and average students through the qualitative think-aloud research method, and to compare the differences in their CSP, scientific knowledge, scientific process skills, creative thinking, and finally, the affective domain used in their CSPS. For the purposes of this study, two scientifically-gifted 6th grade students and one average student were selected. The results show that one gifted student with good creative thinking skills exhibited better performance in CSPS than the other gifted student, who had the highest level of scientific knowledge. In the case of the average student, in spite of her high level of factual knowledge, she had difficulty in proceeding in CSPS due to her shallow scientific knowledge along with her low level of understanding of the given problem. This study highlights the importance of considering the factors which influence successful CSPS and which can play an important role in the education of scientifically-gifted children. These factors were identified as scientific knowledge, understanding of the scientific process, creative thinking, the affective domain, and science problem solving skills.

  • PDF

Characteristics of Student-Generated Analogies, Mapping Understanding, and Mapping Errors on Saturated Solution of Scientifically-Gifted and General Elementary Students (포화 용액 개념에 대해 초등 과학 영재와 일반 학생들이 만든 비유의 특성과 대응 관계 이해도 및 대응 오류)

  • Noh, Tae-Hee;Yang, Chan-Ho;Kang, Hun-Sik
    • Journal of Korean Elementary Science Education
    • /
    • v.28 no.3
    • /
    • pp.292-303
    • /
    • 2009
  • In this study, we investigated the characteristics of the analogies, the mapping understanding, and the mapping errors on saturated solution of scientifically-gifted and general elementary students. Fifth graders (n=60) at four scientifically-gifted education institutes in Seoul and/or Gyeonggi province and fifth graders (n=91) at three elementary schools in Seoul were selected and assigned to the scientifically-gifted group and the general group respectively. After the students of each group performed the experiment and were taught about the target concept in the first class, they administered the test on the self-generating analogies on the target concept in the second class. The results revealed that the students in the scientifically-gifted group made more analogies, especially verbal/pictorial, structural/functional, enriched, and higher systematic ones, and had deeper understanding of the analogy than those in the general group. The numbers of the shared attributes included in the student-generated analogies and the scores of the mapping understanding of the students in the scientifically-gifted group were significantly higher than those in the general group. The students in the scientifically-gifted group had fewer mapping errors than those in the general group. However, not a few students in the scientifically-gifted group had at least one mapping error. Educational implications of these findings are discussed.

  • PDF

A Comparison of Science Inquiry Problem Finding Ability of Gifted Elementary Students of Science and General Elementary Students (초등 과학영재와 일반 학생의 과학탐구문제 발견 능력에 대한 비교)

  • Kim, Min-Hee;Lee, Seok-Hee
    • Journal of Korean Elementary Science Education
    • /
    • v.32 no.4
    • /
    • pp.464-472
    • /
    • 2013
  • The purpose of this study was to analyze the science inquiry problem finding ability of gifted elementary students of science and general elementary students. For this purpose, this study analyzed the types of science inquiry problems in an ill-structured problem finding situation. Also, this study has compared science inquiry problem finding abilities of those two groups. From the results of this study, new ways of improving student' science inquiry problem finding ability and selection of gifted students of science were suggested. The results of this study can be summarized as follows. First, most of the inquiry problems generated by the scientifically gifted and the general students in an ill-structured problem situation could be categorized into seven types (measurement, method, cause, possibility, what, comparison, relationship) according to the inquiry objectives, and both group found more problems in scientific context than in everyday context. Regardless of the context of problem, scientifically gifted students found more problems and the type of problems generated by them were more various than those of general students. Second, there were differences in problem finding ability between scientifically gifted and general students. Scientifically gifted students found more problems and the quality of problems were higher than general students.

Narrative Inquiry on a Scientifically Gifted Elementary School Student's Loneliness (한 초등과학 영재의 외로움에 대한 내러티브 탐구)

  • Kim, Hee Kyung;Kwon, Hyeoksoon
    • Journal of Korean Elementary Science Education
    • /
    • v.35 no.3
    • /
    • pp.348-361
    • /
    • 2016
  • This study was done by narrative inquiry, suggested by Clandinin and Conelly (2000), in order to gain an in-depth understanding of the loneliness experienced by a scientifically gifted elementary school student. The participant of this study was sixth grade student from the Institute for Science Gifted in C University. The data were gathered via in-depth interviews and observations on the participant and her teachers. Based on these research findings, this study can make the following four conclusions with regard to the loneliness experienced by a gifted elementary school student in science. First, some characteristics of the gifted child may make her feel loneliness in the relationships she has with peers, siblings, and parents. Second, parent's repression makes the gifted child feels lonely. Third, the gifted child who feels lonely get consolation from her own subjective world and wants to get recognition from others. Fourth, the educational institute for the gifted serves as a place of education that fosters the gifted child's cognitive development and simultaneously it is where she can form positive relationships with her peers, as well as being a place of emotional comfort.

Development of an EEG Based Discriminant-Scale for Scientifically Gifted Students in Elementary School (초등학교 과학 영재아의 뇌파 기반 변별 척도 개발)

  • Kwon, Suk-Won;Kang, Min-Jung;Shin, Dong-Hoon;Kwon, Yong-Ju
    • Journal of Korean Elementary Science Education
    • /
    • v.25 no.spc5
    • /
    • pp.556-566
    • /
    • 2007
  • The purpose of this study was to develop an electroencephalogram (EEG) based differential-scale for scientifically gifted students in elementary school. For this study, signals of EEG with 19 channels were recorded during the generation of our scientific hypothesis using 22 scientifically gifted students, and with 49 average students being used as the control group. IQ, TCT and knowledge generation (KG) as constructs of the scientifically gifted were administered for both the scientifically gifted and the normal, control group elementary students. A 'gifted' value was added to paper test scores of the IQ, TCT, and KG constructs in order to make a personal standardization score for the gifted students. As a dependent variable, the groups were divided by means of the standardization scores thus produced and as an autonomous variable, various EEG parameters were presented through linear analysis, nonlinear analysis, and interdependency measures of the EEG. Multiple linear regression analysis was applied successfully to explain the EEG parameters and to show the characteristics of the scientifically-gifted. The discrimination analysis was administered through the results of multiple linear regression of the EEG parameters thus produced. This study represents the foundation of the development of an EEG based discriminant-scale for scientifically gifted students in elementary school, because it will be able to faithfully discriminate between scientifically-gifted and average students. The results of this study indicates that most of the EEG parameters produced can contribute to predicting the characteristics of the scientifically-gifted in that they express the degree of mutual information and the coherence of mutuality. Accordingly, mutual connectivity which appears to originate in the brain seems to the core of discrimination.

  • PDF

Exploration on Teaching and Learning Experiences Improving Positive Experiences about Science of Scientifically-Gifted Elementary School Students (초등 과학영재 학생의 과학긍정경험 향상을 위한 교수-학습 경험 탐색)

  • Seo, Sunjin;Kang, Hunsik
    • Journal of The Korean Association For Science Education
    • /
    • v.41 no.2
    • /
    • pp.133-144
    • /
    • 2021
  • The purpose of this study is to explore the teaching and learning experiences to improve the positive experiences about science (PES) of scientifically-gifted elementary school students. For this study, 36 students in grades 5~6 at a gifted science education institutes in Seoul were selected and conducted pre-test and post-test for 'Test for Indicators of Positive Experiences about Science (TIPES).' After the weekly science classes of the institutions were over, individual in-depth interviews were also conducted with some students to explore the teaching and learning experiences for improving their PES. The analysis of the results reveals that the science classes for scientifically-gifted students have been shown to improve PES of scientifically-gifted elementary school students. The teaching and learning experiences to improve their PES included eight teaching and learning experiences that appeared in general elementary school students of previous study such as 'practice-centered exploratory activities,' 'student-led class,' 'positive and professional feedback,' 'construction of knowledge through exploration,' 'class considering student's interest and aptitude,' 'use of materials related to real life,' 'smooth communication and collaboration in group activities,' and 'appropriate difficulty in learning content.' There were also six teaching and learning experiences that newly emerged from science-gifted students: 'Learning experience through the strategies for improving scientific creativity,' 'inquiry experience as a little scientist,' 'advanced or accelerated learning experience,' 'learning experience with excellent students,' 'experience helping other students,' and 'experience with high or low achievement'. Based on these results, the practical implications for improving the student's PES are suggested.

Comparison of Problem Finding Ability, Creative Thinking Ability, Creative Tendency, Science Process Skill between the Scientifically Gifted and General Students (과학영재 학생과 일반 학생의 문제 발견력, 창의적 사고력, 창의적 성향, 과학 탐구 능력 비교)

  • Go, Yu-Mi;Yeo, Sang-Ihn
    • Journal of Korean Elementary Science Education
    • /
    • v.30 no.4
    • /
    • pp.624-633
    • /
    • 2011
  • The purpose of this study was to compare problem finding ability, creative thinking ability, creative tendency, and science process skill between the scientifically gifted students and the general students. For this study, problem finding ability test, integrating creativity test, and science process skill test were conducted to the elementary gifted students (n=95) in science and the general students (n=149) at the same school district. The results of this study were as follows: The mean scores of problem finding, creative thinking, creative tendency, and science process skill of the gifted students were statistically higher than the general students. The problem finding ability had partially weak correlation with sub-domains of the creative thinking ability, creative tendency, and science process skill. Findings suggest that there are needs of further study about factors affecting problem finding and considering the degree of structure of problem situation.

A Comparison of Resilience and Task Commit between Elementary Gifted Students in Science and Non-gifted Students (영재교육기관별 초등과학영재와 일반학생의 회복탄력성 및 과제집착력 비교)

  • Lee, Kyung-Mi;Sung, Seung Min;Jang, Nak Han;Yeo, Sang-Ihn
    • Journal of Science Education
    • /
    • v.39 no.3
    • /
    • pp.307-320
    • /
    • 2015
  • This study aims to compare resilience and task commitment between the elementary gifted students in science and non-gifted students. The subjects in this study were 132 gifted students belonged to gifted education centers or gifted classes and 147 non-gifted students, all of whom were in the 6th grade. In order to examine resilience and task commitment, a 5-point Likert scale-style questionnaire survey was conducted to the subjects. With the aim of identifying the difference between resilience and task commitment among groups, data were analyzed by one-way ANOVA and $Scheff{\acute{e}}$ test. And in order to investigate the relationship between resilience and task commitment among groups, Pearson correlation analysis was carried out. The results of this study were as follows; First, resilience was found to have a significant difference between scientifically gifted students belonged to gifted education centers and non-gifted elementary students, and between students of gifted classes and ordinary elementary students, with no significant difference between scientifically gifted elementary students belonged to gifted education centers and students of gifted classes. Second, task commitment was found to have a significant difference between scientifically gifted elementary students belonged to gifted education centers and non-gifted students. Third, there were very high correlation between resilience and task commitment among the groups.

  • PDF

Development of Integrated Science and Art Teaching-Learning Programs for the Improvement of Creative Brain Activity of Scientifically Gifted Elementary School Student (초등과학영재의 창의적 두뇌 활성화를 위한 과학과 미술 통합 교수-학습 프로그램 개발)

  • Kwon, Young-Sik;Lee, Kil-Jae
    • Journal of Korean Elementary Science Education
    • /
    • v.32 no.4
    • /
    • pp.473-484
    • /
    • 2013
  • The purpose of this study was to develop science and art integrated program to improve the creativity of scientifically gifted elementary school students. This study was to develop science and art integrated program to enhance the creativity of these subjects. This program was consisted of 30 lessons covering 10 topics. It was developed of five stages including the observation stage reflecting the characteristics of the right hemisphere relevant to creativity, the interest and curiosity stage, the experiment design and performing stage, the internalization stage, and the stage of expressing arts. This program was applied to 20 senior gifted students in Y Elementary School in Gyeonggi province. Torrance Tests of Creative Thinking(TTCT) was used in order to investigate and measure the effectiveness of the program before and after its use in class. The results of this study are as follows: First, this program showed results of significant improvement of creativity of scientifically gifted elementary school students after its use in class(p<.05). Second, it was significantly effective in increasing their creativity, especially in the subdomains such as originality, abstractness of title, and territory of resistance on hasty conclusions after its use in class(p<.05). Third, it was significantly effective to increase the Creativity Index that represents creative potential(p<.01). In particular, emotional expression, internalized visualization, unique visualization, and richness of the imagery emerged. This study implies that the science and art integrated program was closely related to the right hemisphere of the features enabling the subjects to create new ideas, new things, and new reactions. In addition, this program is expected to contribute to activate the brain areas of creativity for gifted students in the science field.