• Title/Summary/Keyword: Scientific concept

Search Result 692, Processing Time 0.031 seconds

Elementary School Teachers' Scientific Explanation to Support Students' Inquiry: Focusing on 5th and 6th Grade Earth Science Curriculum (학생들의 탐구 학습을 돕기 위한 교사의 과학적 개념 설명 방식: 초등학교 5, 6학년 지구과학 영역을 중심으로)

  • Suh, Ye-Won;Kho, Hyeon-Duk;Park, Kyeong-Won
    • Journal of Korean Elementary Science Education
    • /
    • v.28 no.2
    • /
    • pp.161-177
    • /
    • 2009
  • This study aims to explore how teachers construct scientific explanation during instructional practices to help students' scientific inquiry. Before investigating teachers' classroom practices, elementary school science curriculum was examined to identify scientific concepts, particularly in earth science. Then, a total of six teachers' scientific explanation in actual teaching practices was analysed focusing on a) explanation of scientific concepts; b) rationale for scientific explanation; c) connection between scientific explanation and everyday explanation. The findings are as follows. First, the science curriculum provides $1{\sim}2$ main scientific concepts per unit, which are mostly appeared in the unit title. Those concepts and sub-concepts are not explicitly described but embedded in students' inquiry activities. Second, the teachers explain scientific concepts and discuss the rationale behind the scientific explanation, but rarely connect scientific explanation to everyday explanation. Also, the level of scientific explanations is low remaining level 1 or 2, not reaching 3, the highest level. Based on the results, the study suggests a) teachers need to provide explicit and clear explanations about scientific concepts; b) teachers are required to connect scientific explanation and everyday explanation; c) the level of teachers scientific explanation should be elevated by using an evidence, reasoning and claim, the components of scientific explanation as well as introducing new scientific concepts and inquiry activities.

  • PDF

Study on Perception of Science High School Students about Composing Laboratory Reports by Grade (과학 고등학교 학생들의 실험 보고서 작성에 대한 학년별 인식 조사 연구)

  • Song, Shin-Cheol;Shim, Kew-Cheol
    • Journal of Science Education
    • /
    • v.36 no.2
    • /
    • pp.303-312
    • /
    • 2012
  • This study was to find science high school students' perception about composing laboratory reports by grade. The instrument to survey the perception of them consisted of the perception about making a lab report, and the effect of compositing laboratory reports on the scientific concept understanding and the scientific inquiry ability. Subjects were 260 students of four science high schools in Seoul metropolitan city and Kyounggi province. Most of science high school students had a little positive perception about compositing lab reports, but they had very positive perception about the effects of it on the scientific concept understanding and scientific inquiry ability. There was the significant difference between grades, because the 10th grade students showed more positive perception toward compositing lab reports than the 11th graders(p<.05). The results suggested that different educational approaches and teaching strategies be needed for science high school students considering grades.

  • PDF

Exploratory Study on Maker Education Activity based on Scientific Concept: For University Students (과학 개념 기반 메이커 교육 활동에 대한 탐색 연구 -대학생들을 대상으로-)

  • Yeo, Hye-Won;Yoon, Jihyun;Kang, Seong-Joo
    • Journal of The Korean Association For Science Education
    • /
    • v.41 no.5
    • /
    • pp.359-370
    • /
    • 2021
  • This study aims to identify the characteristics of the program that integrates maker education with science subjects and to explore the maker's competency expressed in students. To this study, a maker activity program based on scientific concepts was developed and applied to 20 first-year students at H University in a general chemistry experiment course, and activity data were analyzed. The analysis results of maker activities based on scientific concepts are as follows. First, students performed activities through the process of 'presentation of ideas,' 'selection and planning of ideas,' and 'prototyping'. In particular, it was confirmed that prototyping was divided into stages of "partial prototyping" and "full prototyping". Second, as characteristics of the activity, 'use of scientific concepts as logic for coding in the process of maker activities', 'in-depth understanding of scientific concepts', and 'inducing high achievement and interest through transfer of initiative in learning' were confirmed. Third, collaboration competency and making performance competency were frequently expressed in the process of activities, but human-centered competency were rarely expressed.

Concept and Characteristics of Intelligent Science Lab (지능형 과학실의 개념과 특징)

  • Hong, Oksu;Kim, Kyoung Mi;Lee, Jae Young;Kim, Yool
    • Journal of The Korean Association For Science Education
    • /
    • v.42 no.2
    • /
    • pp.177-184
    • /
    • 2022
  • This article aims to explain the concept and characteristics of the 'Intelligent Science Lab', which is being promoted nationwide in Korea since 2021. The Korean Ministry of Education creates a master plan containing a vision for science education every five years. The most recently announced '4th Master plan for science education (2020-2024)' emphasizes the policy of setting up an 'intelligent science lab' in all elementary and secondary schools as an online and offline space for scientific inquiry using advanced technologies, such as Internet of Things and Augmented and Virtual Reality. The 'Intelligent Science Lab' project is being pursued in two main directions: (1) developing an online platform named 'Intelligent Science Lab-ON' that supports science inquiry classes, and (2) building a science lab space in schools that encourages active student participation while utilizing the online platform. This article presents the key features of the 'Intelligent Science Lab-ON' and the characteristics of intelligent science lab spaces newly built in schools. Furthermore, it introduces inquiry-based science learning programs developed for intelligent science labs. These programs include scientific inquiry activities in which students generate and collect data ('data generation' type), utilize datasets provided by the online platform ('data utilization' type), or utilize open and public data sources ('open data source' type). The Intelligent Science Lab project is expected to not only encourage students to engage in scientific inquiry that solves individual and social problems based on real data, but also contribute to presenting a model of online and offline linked scientific inquiry lessons required in the post-COVID-19 era.

Analysis of Concept's Diversity and Proximity for Photosynthesis in Grade 7 Students

  • Lim, Soo-Min;Jeong, Jae-Hoon;Kim, Youngshin
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.6
    • /
    • pp.1050-1062
    • /
    • 2012
  • Concepts of science have been developed by occupying 'ecological niche' within conceptual ecology. The ecological niche is determined from the mutual effect between intellectual environmental of the learner and new concept, which few studies have been conducted. This study examined how the ecological niche of the concept of photosynthesis in $7^{th}$ grade is changed by instruction. The ecological niche was analyzed using 2 methods: (1) the change in the diversity of concepts, and (2) the change in the proximity of concepts based on the frequency and the relativeness score of the concepts. The concept of photosynthesis was analyzed in the 4 domains in the place of photosynthesis, products of photosynthesis, reactants of photosynthesis, and environmental factors. The results of this study are as follows: (1) reduced diversity of concepts, (2) increased frequency and relativeness score of the scientific concepts, and (3) increased proximity of the scientific concepts by instruction. With these results, the mutual effects of the concepts within the conceptual ecology have become active by class to differentiate the relationships between the concepts, which accordingly displayed their changes in status.

The Effects of Concept Sketches on the Understanding and Attitude in High School Student's learning of Weather Change (날씨 변화 학습에서 개념스케치 활용이 고등학생의 개념 이해도와 과학 태도에 미치는 영향)

  • Shin, Hyun Young;Kim, Hak Sung;Sohn, Jungjoo
    • Journal of Science Education
    • /
    • v.34 no.1
    • /
    • pp.12-22
    • /
    • 2010
  • The purpose of this study was to investigate the effect of concept sketches on the understanding and scientific attitude in high school student's learning of weather change. Among the various fields of meteorology, especially in weather change, we often deal with the change of the spatiotemporal change in an abstract way. So making use of 'Concept Sketches'- simplified sketches which represent the main features, principles, processes and interrelationships of the learning contents using some concise explanations, signs and terms - could help the students learn the phenomena of weather change efficiently. This study's aim was to check up the effect and analyze the results of the lesson including the concept sketches. As a result of this study, concept sketches group showed significant improvement compared to the other groups in understanding of weather change and in scientific attitude, too. In students' recognition research of concept sketches showed that students found the class more interesting with improved concentration and had a chance to review through concept sketching, which is helpful for their learning. Considering the above research results, the study which applies concept sketching required the students to actively process their knowledge, and had a positive effect on the understanding of weather changes. Most of all, drawing the pictures which is a familiar activity helped the students to take part in the class eagerly.

  • PDF

The Concept of Altitude of the Sun by difference of Spatial Ability of Elementary Student (초등학생의 공간능력에 따른 태양의 고도에 관한 개념)

  • Jeon, Man-Kuk;Kim, Hyoung-Bum;Jeong, Jin-Woo
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.6 no.1
    • /
    • pp.28-39
    • /
    • 2013
  • The purpose of this study is to investigate the conceptions about altitude of the Sun of elementary students according to differences by the spatial ability. In this study through the qualitative analysis, 4 students who were similar understanding levels of concepts to altitude of the Sun and differences by the spatial ability were selected out of 75 in 6th grade elementary located in Sunchang, Jellabuk-do Province. 4 students for the qualitative analysis were selected by the test instrument of spatial ability and altitude of the Sun. The results of study was students with higher spatial ability were higher understanding levels of concepts to altitude of the Sun. However, both of student with higher and lower spatial ability showed a false concept to the expanded concepts into outer space like a cause of seasonal change, change of altitude of the Sun by latitude unlike the intution. Students with lower spatial ability didn't form the scientific concepts, not only a cause of seasonal change and change of altitude of the Sun but also difference of energy density by altitude of the Sun. A student of two with lower spatial ability has been impediment strongly to form the scientific concept by the false concepts to the distance. The findings were as follows; Learning to altitude of the Sun regardless of the difference of spatial ability should be learned to interact to the intution, celestial movement and model experiment. To students with lower spatial ability should be developed teaching methods to understand the relation between the Sun and celestial movement.

An Analysis of Types of Scientific Humors Made by Scientifically-gifted Elementary School Students and Their Perceptions of the Making Scientific Humor (초등 과학영재학생들이 만든 과학 유머의 유형 및 과학 유머 만들기에 대한 인식 분석)

  • Lee, Jee-yun;Kang, Hunsik
    • Journal of Korean Elementary Science Education
    • /
    • v.37 no.3
    • /
    • pp.267-284
    • /
    • 2018
  • This study analyzed the types of scientific humors made by scientifically-gifted elementary school students and their perceptions of making scientific humor. For this, 77 students from $4^{th}$ to $6^{th}$ graders of gifted science education center in Seoul National University of Education were selected. Scientific humors made by the students were analyzed according to the number and types. Their perceptions of making scientific humor were also analyzed through a questionnaire and group interviews. The analysis of the results revealed that most of scientifically-gifted students made more than 2 scientific humors, and the number of scientific humor for each students varied from 0 to 11. The most types they made were the descriptive type and the pun using pronunciation type, but they made various types without any special type to be biased. And They made more the dialogue type than the narrative type, especially the riddle type. They used scientific knowledge that preceded the knowledge of science curriculum in their grade level over two or more years. The scientific knowledge of chemistry was used more than physics, biology, earth science and combination field. The name utilization type was more than the characteristic utilization type and the principle utilization type. Scientific humors in the everyday situation were more than humors in artificial situation. The students had various positive perceptions in making scientific humor such as increase of scientific knowledge, increase of various thinking abilities, deep understanding of science concept and principle, increase of interest and motivation about science and science learning, and increase on sense of humor. They had also some negative perceptions related to difficulties in the process of making scientific humor, lack of fun, and lack of time in the class.

Role of Scientific Reasoning in Elementary School Students' Construction of Food Pyramid Prediction Models (초등학생들의 먹이 피라미드 예측 모형 구성에서 과학적 추론의 역할)

  • Han, Moonhyun
    • Journal of Korean Elementary Science Education
    • /
    • v.38 no.3
    • /
    • pp.375-386
    • /
    • 2019
  • This study explores how elementary school students construct food pyramid prediction models using scientific reasoning. Thirty small groups of sixth-grade students in the Kyoungki province (n=138) participated in this study; each small group constructed a food pyramid prediction model based on scientific reasoning, utilizing prior knowledge on topics such as biotic and abiotic factors, food chains, food webs, and food pyramid concepts. To understand the scientific reasoning applied by the students during the modeling process, three forms of qualitative data were collected and analyzed: each small group's discourse, their representation, and the researcher's field notes. Based on this data, the researcher categorized the students' model patterns into three categories and identified how the students used scientific reasoning in their model patterns. The study found that the model patterns consisted of the population number variation model, the biological and abiotic factors change model, and the equilibrium model. In the population number variation model, students used phenomenon-based reasoning and relation-based reasoning to predict variations in the number of producers and consumers. In the biotic and abiotic factors change model, students used relation-based reasoning to predict the effects on producers and consumers as well as on decomposers and abiotic factors. In the equilibrium model, students predicted that "the food pyramid would reach equilibrium," using relation-based reasoning and model-based reasoning. This study demonstrates that elementary school students can systematically elaborate on complicated ecology concepts using scientific reasoning and modeling processes.

Development of Program for Discretionary Activity Focused on Multiple Activity with Everyday-Life Materials to Enhance Scientific Creativity for Grade 6-7 Students and Exploring the Influence (과학창의력 신장을 위한 ‘일상생활 소재 다중활동’ 중심의 6~7학년 ‘재량활동’)

  • 김형석;정용재;곽성일;하은선;이선양;이현정
    • Journal of Korean Elementary Science Education
    • /
    • v.23 no.4
    • /
    • pp.344-356
    • /
    • 2004
  • In this study, we developed the program for 'Discretionary Activity' focusing on the multiple activities with everyday-life materials to enhance scientific creativity (MAEM-SC), which was specifically for students in the 6-7th grade according to the 7th curriculum in Korea. As important factors for scientific creativity, we selected the ability to find out the context relevant to scientific problems, the ability to connect the problem context to scientific knowledge, the ability to invent the ways to solve the problem scientifically, and ability to concentrate on the scientific problem solving activity. The topics of the program were drawn from common and familiar things in our everyday contexts, such as human body, everyday tools, food, play and toys, and everyday episodes. The multiple activities here mean the activities which are systematically constructed with the various types of activities with a specific intention. The multiple activities were designed in three types, that is, series type, parallel type, and combination type. Each of them consists of the several activities as follows: estimating and measuring, carrying out an experiment using body, inventing implement (tools), thinking statistically, writing creatively with scientific themes, and connecting one concept to another concept etc. Through a trial of the program, we found that this program has some positive influence on the enhancement both of the ability to find out the context relevant to scientific problems and the ability to connect it to the students' existing scientific knowledge.

  • PDF