• Title/Summary/Keyword: Science major

Search Result 18,740, Processing Time 0.045 seconds

A Study on Storage of Major Herbal Medicine Materials, Zingiberis Rhizoma

  • Choi, Seong-Kyu;Yun, Kyeong-Won;Shin, Kil-Man
    • Plant Resources
    • /
    • v.5 no.3
    • /
    • pp.224-227
    • /
    • 2002
  • To develop optimal storage method of root of Zingiberis Rhizoma, which has been grown as major cultural herbal medicine materials, root of Zingiberis Rhizoma, was stored for 10 months with different packing materials and sealing methods. The loss in dry weight as influenced by packing materials and sealing methods was the lowest at vacuum packing and followed by complete sealing methods with transparent polyethylene film. The ratio of root rot during the storage period was not significantly different between packing materials but was significantly different between sealing conditions. Conclusionally, vacuum packing and complete sealing with polyethylene film appears to be optimal for storage of Zingiberis Rhizoma.

  • PDF

A Study for the Standardization of Elsholtzia ciliata (Thunb.) Hylander and Elsholtzia splendens Nakai ex F. Maekawa

  • Yun, Jong-Seong;Lee, Sang-In;Rhee, Jae-Seong;Park, Ho-Koon
    • The Journal of Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.19-26
    • /
    • 1998
  • The purpose of present study is to clarify the differences between EIslwitzia Ciliata (Thunb.) Hylander(향유) and Elsholtzia splendens Nakai ex F. Maekawa (꽃향유) for standardization and the proper usage as medicinal herbs. The major ingredients of both species were isolated by distillation and extraction. The qualitative and quantitative analyses of major distillates were carried out by the use of GC/MS. There was a significant difference between the components of Elsholtzia ciliata and Elsholtzia splendens in the aspects of major components. Several common ingredients were identified as linalool, cumene, elsholtzia ketone, naginata ketone isomer, naginata ketone, myristicin, and sesquiterpene alcohol. Comparison between Elsholtzia. ciliata and Elsholtzia splendens was done in the aspect of major compounds. Myristicin (33.7%) has been shown to be the major component in Elsholtzia ciliata whereas naginata ketone isomer (26.1%) was believed to be a major ingredient in Elsholtzia splendens. The elsholtzia ketone was also one of the major differentiating factors between Elsholtzia splendens and Elsholtzia ciliata, and the quantity is 15.1% in Elslwltzia splendens compared to 2.87% in Elsholtzia ciliata. Moreover, in the Elsholtzia splendens, 4- vinylguaiacol and isoosmorhizole were absent, but both compounds were present in the EIsholtzia ciliata.

  • PDF

Transcriptome profiling identifies immune response genes against porcine reproductive and respiratory syndrome virus and Haemophilus parasuis co-infection in the lungs of piglets

  • Zhang, Jing;Wang, Jing;Zhang, Xiong;Zhao, Chunping;Zhou, Sixuan;Du, Chunlin;Tan, Ya;Zhang, Yu;Shi, Kaizhi
    • Journal of Veterinary Science
    • /
    • v.23 no.1
    • /
    • pp.2.1-2.18
    • /
    • 2022
  • Background: Co-infections of the porcine reproductive and respiratory syndrome virus (PRRSV) and the Haemophilus parasuis (HPS) are severe in Chinese pigs, but the immune response genes against co-infected with 2 pathogens in the lungs have not been reported. Objectives: To understand the effect of PRRSV and/or HPS infection on the genes expression associated with lung immune function. Methods: The expression of the immune-related genes was analyzed using RNA-sequencing and bioinformatics. Differentially expressed genes (DEGs) were detected and identified by quantitative real-time polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC) and western blotting assays. Results: All experimental pigs showed clinical symptoms and lung lesions. RNA-seq analysis showed that 922 DEGs in co-challenged pigs were more than in the HPS group (709 DEGs) and the PRRSV group (676 DEGs). Eleven DEGs validated by qRT-PCR were consistent with the RNA sequencing results. Eleven common Kyoto Encyclopedia of Genes and Genomes pathways related to infection and immune were found in single-infected and co-challenged pigs, including autophagy, cytokine-cytokine receptor interaction, and antigen processing and presentation, involving different DEGs. A model of immune response to infection with PRRSV and HPS was predicted among the DEGs in the co-challenged pigs. Dual oxidase 1 (DUOX1) and interleukin-21 (IL21) were detected by IHC and western blot and showed significant differences between the co-challenged pigs and the controls. Conclusions: These findings elucidated the transcriptome changes in the lungs after PRRSV and/or HPS infections, providing ideas for further study to inhibit ROS production and promote pulmonary fibrosis caused by co-challenging with PRRSV and HPS.

Osteogenic Differentiation Potential in Parthenogenetic Murine Embryonic Stem Cells

  • Kang, Ho-In;Cha, Eun-Sook;Choi, Young-Ju;Min, Byung-Moo;Roh, Sang-Ho
    • International Journal of Oral Biology
    • /
    • v.33 no.3
    • /
    • pp.91-95
    • /
    • 2008
  • Embryonic stem cells have a pluripotency and a potential to differentiate to all type of cells. In our previous study, we have shown that embryonic stem cells (ESCs) lines can be generated from murine parthenogenetic embryos. This parthenogenetic ESCs line can be a useful stem cell source for tissue repair and regeneration. The defect in full-term development of parthenogenetic ESCs line enables researchers to avoid the ethical concerns related with ESCs research. In this study, we presented the results demonstrating that parthenogenetic ESCs can be induced into osteogenic cells by supplementing culture media with ascorbic acid and $\beta$-glycerophosphate. These cells showed morphologies of osteogenic cells and it was proven by Von Kossa staining and Alizarin Red staining. Expression of marker genes for osteogenic cells (osteopontin, osteonectin, alkaline phosphatase, osteocalcin, bone-sialoprotein, collagen type1, and Cbfa1) also confirmed osteogenic potential of these cells. These results demonstrate that osteogenic cells can be generated from parthenogenetic ESCs in vitro.

Suppression of Melanose Caused by Diaporthe citri on Citrus Leaves Pretreated with Bio-sulfur

  • Shin, Yong Ho;Ko, Eun Ju;Kim, Su Jeong;Hyun, He Nam;Jeun, Yong Chull
    • The Plant Pathology Journal
    • /
    • v.35 no.5
    • /
    • pp.417-424
    • /
    • 2019
  • Melanose, caused by Diaporthe citri, is one of severe diseases in citrus, a major economic resource in Jeju island. To reduce the usage amount of organic synthetic fungicide, bio-sulfur was tested as an alternative chemical to control citrus melanose in the present study. Direct antifungal activity of bio-sulfur against D. citri was determined through in vitro experiment using artificial nutrient media. Disease severity of melanose on bio-sulfur pretreated citrus leaves was lower than that on untreated ones. To illustrate the mechanism of disease suppression by bio-sulfur, infection structures were observed with a fluorescent microscope and a scanning electron microscope. In fluorescent microscopic observation, most conidia rarely germinated. In addition, hyphal growth on leaves pretreated with bio-sulfur was inhibited compared to that on untreated ones. In scanning electron microscope images of bio-sulfur pretreated leaves, surfaces of most conidia were shrunk while hyphae were morphologically changed and frequently branched. Such microscopic observations were also found for leaves pretreated with a commercial fungicide Dithianon. These results suggest that bio-sulfur may be used to control citrus melanose as an environment friendly alternative to organic synthetic fungicides

Inheritance between Le Gene and Ti Gene in Soybean (Glycine max L.)

  • Lee, Kyoung Ja;Park, Mo Se;Sung, Mi Kyung;Kim, Myung Sik;Chung, Jong Il
    • Korean Journal of Breeding Science
    • /
    • v.40 no.2
    • /
    • pp.97-100
    • /
    • 2008
  • Lectin protein and Kunitz trypsin inhibitor (KTI) protein of mature soybean seed are a main antinutritional factor in soybean seed. The Le gene controls a lectin protein and Ti gene controls the KTI protein in soybean. Ti locus has been located on linkage group 9 in the classical linkage map of soybean. Position of Le locus on linkage map was not identified. Genetic relationship between Ti locus and Le locus could be useful in soybean breeding program for the genetic elimination of these factors. The objective of this study was to determine the independent inheritance or linkage between Ti locus and Le locus in soybean seed. Two $F_2$ populations were developed from three parents (Gaechuck#1, T102, and PI548415). The $F_1$ seeds from Gaechuck#1 (titiLeLe) ${\times}$ T102 (TiTilele) and Gaechuck#1 (titiLeLe) ${\times}$ PI548415 (TiTilele) were obtained. The lectin and KTI protein were analysed from $F_2$ seeds harvested from the $F_1$ plants to find independent assortment or linkage between Ti locus and Le locus. The segregation ratios of 3 : 1 for Le locus (129 Le_ : 44 lele) and Ti locus (132 Ti_ : 41 titi) and were observed. The segregation ratios of 9 : 3 : 3 : 1 (95 Le_Li_ : 34 Le_titi: 37 leleTi_ : 7 leletiti) between Le gene and Ti gene in $F_2$ seeds were observed. This data showed that Ti gene was inherited independently with the Le gene in soybean. These results will be helpful in breeding program for selecting the line with lacking both KTI and lectin protein in soybean.