• Title/Summary/Keyword: Science & Technology Databases

Search Result 447, Processing Time 0.03 seconds

Development of Risk-Based Inspection(RBI) Technology for LNG Plant Based on API RP581 Code (API RP 581 Code를 기반으로한 LNG 플랜트의 Risk-Based Inspection(RBI) 기술 개발)

  • Choi, Song-Chun;Choi, Jae-Boong;Hawang, In-Ju
    • Corrosion Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.179-183
    • /
    • 2012
  • As one of promising solutions to overcome high oil price and energy crisis, the construction market of high value-added LNG plants is spotlighted world widely. The purpose of this study is to introduce LNG-RBI system to develop risk assessment technology with RAM(Reliability, Availability, Maintainability) modules against overseas monopolization. After analyzing relevant specific features and their technical levels, risk assessment program, non-destructive reliability evaluation strategy and safety criteria unification class are derived as core technologies. These IT-based convergence technologies can be used for enhancement of LNG plant efficiency, in which the modular parts are related to a system with artificial optimized algorithms as well as diverse databases of facility inspection and diagnosis fields.

Development of an Informetric Analysis System KnowledgeMatrix (계량정보분석시스템 KnowledgeMatrix 개발)

  • Lee, Bangrae;Yeo, Woon Dong;Lee, June Young;Lee, Chang-Hoan;Kwon, Oh-Jin;Moon, Yeong-ho
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2007.11a
    • /
    • pp.167-171
    • /
    • 2007
  • Application areas of Knowledge Discovery in Database (KDD) have been expanded into many R&D management processes including technology trends analysis, forecasting and evaluation etc. Established research field such as informetrics (or scientometrics) has recently fully utilized techniques or methods of KDD. Various systems have been developed to support works of analyzing large-scale R&D related databases such as patent DB or bibliographic DB by a few researchers or institutions. But extant systems have some problems for korean users to use. Their prices is not cheap, korean language process not available, and user's demands not reflected. To solve these problems, Korea Institute of Science and Technology Information (KISTI) developed stand-alone type information analysis system named as KnowledgeMatrix. KnowledgeMatrix system offer various functions to analyze retrieved data set from databases. Knowledge Matrix main operation unit is composed of user-defined lists and matrix generation, cluster analysis, visualization, data pre-processing. KnowledgeMatrix show better performances and offer more various functions than extant systems.

  • PDF

Informatics for protein identification by tandem mass spectrometry; Focused on two most-widely applied algorithms, Mascot and SEQUEST

  • Sohn, Chang-Ho;Jung, Jin-Woo;Kang, Gum-Yong;Kim, Kwang-Pyo
    • Bioinformatics and Biosystems
    • /
    • v.1 no.2
    • /
    • pp.89-94
    • /
    • 2006
  • Mass spectrometry (MS) is widely applied for high throughput proteomics analysis. When large-scale proteome analysis experiments are performed, it generates massive amount of data. To search these proteomics data against protein databases, fully automated database search algorithms, such as Mascot and SEQUEST are routinely employed. At present, it is critical to reduce false positives and false negatives during such analysis. In this review we have focused on aspects of automated protein identification using tandem mass spectrometry (MS/MS) spectra and validation of the protein identifications of two most common automated protein identification algorithms Mascot and SEQUEST.

  • PDF

Using Context Information to Improve Retrieval Accuracy in Content-Based Image Retrieval Systems

  • Hejazi, Mahmoud R.;Woo, Woon-Tack;Ho, Yo-Sung
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.926-930
    • /
    • 2006
  • Current image retrieval techniques have shortcomings that make it difficult to search for images based on a semantic understanding of what the image is about. Since an image is normally associated with multiple contexts (e.g. when and where a picture was taken,) the knowledge of these contexts can enhance the quantity of semantic understanding of an image. In this paper, we present a context-aware image retrieval system, which uses the context information to infer a kind of metadata for the captured images as well as images in different collections and databases. Experimental results show that using these kinds of information can not only significantly increase the retrieval accuracy in conventional content-based image retrieval systems but decrease the problems arise by manual annotation in text-based image retrieval systems as well.

  • PDF

Local Linear Transform and New Features of Histogram Characteristic Functions for Steganalysis of Least Significant Bit Matching Steganography

  • Zheng, Ergong;Ping, Xijian;Zhang, Tao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.4
    • /
    • pp.840-855
    • /
    • 2011
  • In the context of additive noise steganography model, we propose a method to detect least significant bit (LSB) matching steganography in grayscale images. Images are decomposed into detail sub-bands with local linear transform (LLT) masks which are sensitive to embedding. Novel normalized characteristic function features weighted by a bank of band-pass filters are extracted from the detail sub-bands. A suboptimal feature set is searched by using a threshold selection algorithm. Extensive experiments are performed on four diverse uncompressed image databases. In comparison with other well-known feature sets, the proposed feature set performs the best under most circumstances.

A single-phase algorithm for mining high utility itemsets using compressed tree structures

  • Bhat B, Anup;SV, Harish;M, Geetha
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.1024-1037
    • /
    • 2021
  • Mining high utility itemsets (HUIs) from transaction databases considers such factors as the unit profit and quantity of purchased items. Two-phase tree-based algorithms transform a database into compressed tree structures and generate candidate patterns through a recursive pattern-growth procedure. This procedure requires a lot of memory and time to construct conditional pattern trees. To address this issue, this study employs two compressed tree structures, namely, Utility Count Tree and String Utility Tree, to enumerate valid patterns and thus promote fast utility computation. Furthermore, the study presents an algorithm called single-phase utility computation (SPUC) that leverages these two tree structures to mine HUIs in a single phase by incorporating novel pruning strategies. Experiments conducted on both real and synthetic datasets demonstrate the superior performance of SPUC compared with IHUP, UP-Growth, and UP-Growth+algorithms.

Information Searching on STN Web (STN Easy & ChemPort) (인터넷 웹에서의 STN 검색)

  • Yoo, Sun-Hi
    • Journal of Information Management
    • /
    • v.30 no.1
    • /
    • pp.11-28
    • /
    • 1999
  • STN(The Scientific & Technical Information Network) is a fee-based, comprehensive, online search service that provides. accurate, up-to-date information from over 200 scientific, technical, business, and patent databases. STN Easy(http: //stneasy.cas.org) provides point-and-click access to 59 selected key STN databases on the web, and it gives drawings and 3-dimensional chemical structures as well as citation-abstract informations. And information searchers are now able to access full-text documents from key scientific publishers and patent offices through STN Easy via the ChemPort(http://www.chemport.org) connection.

  • PDF

Patterns of Citing Korean DOI Journals According to CrossRef's Cited-by Linking and a Local Journal Citation Database

  • Seo, Tae-Sul;Jung, Eun-Gyeong;Kim, Hwanmin
    • Journal of Information Science Theory and Practice
    • /
    • v.1 no.2
    • /
    • pp.58-68
    • /
    • 2013
  • Citing literature is a very important activity for scholars in writing articles. Many publishers and libraries build citation databases and provide citation reports on scholarly journals. Cited-by linking is a service representing what an article cites and how many times it cites a specific article within a journal database. Recently, information services based on DOIs (Digital Object Identifiers) have been increasing in number. CrossRef, a non-profit organization for the DOI registration agency, maintains the DOI system and provides the cited-by linking service. Recently, the number of Korean journals adopting DOI is also rapidly increasing. The Korea Institute of Science and Technology Information (KISTI) supports Korean learned societies in DOI related activities in collaboration with CrossRef. This study analyzes cited patterns of Korean DOI journal articles using CrossRef's cited-by linking data and a Korean journal citation database. This analysis has been performed in terms of publication country and the language of journals citing Korean journal articles. The results show that DOI, SCI(E) (Science Citation Index (Expanded)), and English journals are more likely to be cited internationally.

The OAuth 2.0 Web Authorization Protocol for the Internet Addiction Bioinformatics (IABio) Database

  • Choi, Jeongseok;Kim, Jaekwon;Lee, Dong Kyun;Jang, Kwang Soo;Kim, Dai-Jin;Choi, In Young
    • Genomics & Informatics
    • /
    • v.14 no.1
    • /
    • pp.20-28
    • /
    • 2016
  • Internet addiction (IA) has become a widespread and problematic phenomenon as smart devices pervade society. Moreover, internet gaming disorder leads to increases in social expenditures for both individuals and nations alike. Although the prevention and treatment of IA are getting more important, the diagnosis of IA remains problematic. Understanding the neurobiological mechanism of behavioral addictions is essential for the development of specific and effective treatments. Although there are many databases related to other addictions, a database for IA has not been developed yet. In addition, bioinformatics databases, especially genetic databases, require a high level of security and should be designed based on medical information standards. In this respect, our study proposes the OAuth standard protocol for database access authorization. The proposed IA Bioinformatics (IABio) database system is based on internet user authentication, which is a guideline for medical information standards, and uses OAuth 2.0 for access control technology. This study designed and developed the system requirements and configuration. The OAuth 2.0 protocol is expected to establish the security of personal medical information and be applied to genomic research on IA.

An Index Interpolation-based Subsequence Matching Algorithm supporting Normalization Transform in Time-Series Databases (시계열 데이터베이스에서 인덱스 보간법을 기반으로 정규화 변환을 지원하는 서브시퀀스 매칭 알고리즘)

  • No, Ung-Gi;Kim, Sang-Uk;Hwang, Gyu-Yeong
    • Journal of KIISE:Databases
    • /
    • v.28 no.2
    • /
    • pp.217-232
    • /
    • 2001
  • 본 논문에서는 시계열 데이터베이스에서 정규화 변환을 지원하는 서브시퀀스 매칭 알고리즘을 제안한다. 정규화 변환을 시계열 데이터 간의 절대적인 유클리드 거리에 관계 없이, 구성하는 값들의 상대적인 변화 추이가 유사한 패턴을 갖는 시계열 데이터를 검색하는 데에 유용하다. 기존의 서브시퀀스 매칭 알고리즘을 확장 없이 정규화 변환 서브시퀀스 매칭에 단순히 응용할 경우, 질의 결과로 반환되어야 할 서부시퀀스를 모두 찾아내지 못하는 착오 기각이 발생한다. 또한, 정규화 변환을 지원하는 기존의 전체 매칭 알고리즘의 경우, 모든 가능한 질의 시퀀스 길이 각각에 대하여 하나씩의 인덱스를 생성하여야 하므로, 저장 공간 및 데이터 시퀀스 삽입/삭제의 부담이 매우 심각하다. 본 논문에서는 인덱스 보간법을 이용하여 문제를 해결한다. 인덱스 보간법은 인덱스가 요구되는 모든 경우 중에서 적당한 간격의 일부에 대해서만 생성된 인덱스를 이용하며, 인덱스가 필요한 모든 경우에 대한 탐색을 수행하는 기법이다. 제안된 알고리즘은 몇 개의 질의 시퀀스 길이에 대해서만 각각 인덱스를 생성한 후, 이를 이용하여 모든 가능한 길이의 질의 시퀀스에 대해서 탐색을 수행한다. 이때, 착오 기각이 발생하지 않음을 증명한다. 제안된 알고리즘은 질의 시에 주어진 질의 시퀀스의 길이에 따라 생성되어 있는 인덱스 중에서 가장 적절한 것을 선택하여 탐색을 수행한다. 이때, 생성되어 있는 인덱스의 개수가 많을수록 탐색 성능이 향상된다. 필요에 따라 인덱스의 개수를 변화함으로써 탐색 성능과 저장 공간 간의 비율을 유연하게 조정할 수 있다. 질의 시퀀스의 길이 256 ~ 512중 다섯 개의 길이에 대해 인덱스를 생성하여 실험한 결과, 탐색 결과 선택률이 $10^{-2}$일 때 제안된 알고리즘의 탐색 성능이 순차 검색에 비하여 평균 2.40배, 선택률이 $10^{-5}$일 때 평균 14.6배 개선되었다. 제안된 알고리즘의 탐색 성능은 탐색 결과 선택률이 작아질수록 더욱 향상되므로, 실제 데이터베이스 응용에서의 효용성이 높다고 판단된다.

  • PDF