
1  |   INTRODUCTION

Transactional	 databases	 of	 supermarket	 stores	 serve	 as	
a	primary	source	for	mining	interesting	patterns	that	in-
dicate	 associations	 between	 different	 items	 purchased	
by	 customers.	This	 mining	 task	 is	 termed	 as	 association	
rule	mining	(ARM)	and	used	in	many	applications	across	
various	domains,	including	text	mining	[1],	bioinformat-
ics	[2],	and	pharmacovigilance	[3].	To	obtain	association	
rules	from	a	huge	number	of	customer	transactions,	items	
that	co-	occur	frequently	are	enumerated	to	assert	the	va-
lidity	and	interestingness	of	associations.	Hence,	mining	
such	frequent	itemsets	forms	the	core	phase	of	the	ARM	
task,	which	has	been	extensively	researched	[4].

More	often	than	not,	frequently	purchased	items	do	not	
necessarily	contribute	adequately	to	the	revenue	of	a	su-
permarket	store.	This	is	due	to	the	inherent	nature	of	the	
frequent	itemset	mining	(FIM)	model	that	relies	only	on	
the	presence	or	absence	of	an	item	in	a	transaction	when	
determining	the	frequency	of	the	item.	Formally,	a	mea-
sure	called	support	is	calculated	as	the	ratio	of	the	number	
of	transactions,	in	which	the	items	of	an	itemset	co-	occur,	
to	the	total	number	of	transactions	to	decide	whether	the	
itemset	is	frequent	or	not	based	on	a	threshold	set	by	the	
user.	This	measure	does	not	rely	on	the	quantity	or	unit	
profit	 of	 the	 items	 that	 are	 essential	 in	 determining	 the	
revenue	 incurred.	 Hence,	 a	 framework	 called	 the	 high	
utility	 itemset	 mining	 (HUIM)	 has	 evolved	 to	 consider	
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Abstract
Mining	high	utility	itemsets	(HUIs)	from	transaction	databases	considers	such	
factors	as	the	unit	profit	and	quantity	of	purchased	items.	Two-	phase	tree-	based	
algorithms	transform	a	database	 into	compressed	tree	structures	and	generate	
candidate	 patterns	 through	 a	 recursive	 pattern-	growth	 procedure.	 This	 proce-
dure	requires	a	lot	of	memory	and	time	to	construct	conditional	pattern	trees.	To	
address	this	issue,	this	study	employs	two	compressed	tree	structures,	namely,	
Utility	Count	Tree	and	String	Utility	Tree,	to	enumerate	valid	patterns	and	thus	
promote	fast	utility	computation.	Furthermore,	the	study	presents	an	algorithm	
called	 single-	phase	 utility	 computation	 (SPUC)	 that	 leverages	 these	 two	 tree	
structures	to	mine	HUIs	in	a	single	phase	by	incorporating	novel	pruning	strate-
gies.	 Experiments	 conducted	 on	 both	 real	 and	 synthetic	 datasets	 demonstrate	
the	superior	performance	of	SPUC	compared	with	IHUP,	UP-	Growth,	and	UP-	
Growth+	algorithms.
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such	factors,	which	can	be	seen	as	a	generalized	form	of	
the	FIM	task.

The	utility	of	an	itemset	is	often	measured	as	the	prod-
uct	of	the	quantity	and	unit	profit	of	the	items	that	form	
the	itemset.	While	the	algorithms	that	mine	frequent	items	
exploit	the	downward	closure	property	with	respect	to	the	
support	 for	 effective	 search	 space	 exploration,	 the	 mea-
sure	of	utility	is	not	downward	closed.	This	void	is	filled	by	
various	upper	bounds	on	the	utility,	with	the	transaction-	
weighted	utility	(TWU)	being	a	prominent	example.	The	
algorithms	for	mining	HUIs	have	evolved	from	two-	phase	
to	single-	phase.	The	most	efficient	two-	phase	algorithms	
such	 as	 IHUP,	 UP-	Growth,	 and	 UP-	Growth+	 construct	
tree	 structures	 and	 enumerate	 candidate	 patterns	 via	 a	
recursive	pattern-	growth	procedure.	This	bottom-	up	pro-
cedure	constructs	conditional	pattern	trees	that	consume	
a	lot	of	memory.	This	is	a	severe	performance	bottleneck.	
Furthermore,	once	candidates	are	outputted	from	such	a	
procedure,	the	utility	has	to	be	determined	from	an	addi-
tional	 database	 scan.	This	 paper	 presents	 a	 single-	phase	
algorithm	called	single-	phase	utility	computation	(SPUC)	
to	efficiently	utilize	the	concept	of	tree	structures	in	min-
ing	HUIs.	SPUC	has	the	following	advantages:

•	 It	utilizes	two	new	tree	structures,	namely,	Utility	Count	
Tree	(UCT)	and	String	Utility	Tree	(SUT).	Both	trees	are	
constructed	 from	a	 single	database	 scan	and	are	com-
plete.	While	 UCT	 guides	 the	 search	 space	 exploration	
for	enumerating	valid	patterns,	SUT	 is	a	compact	 tree	
that	 provides	 the	 utility	 of	 these	 patterns.	 This	 com-
pletely	eliminates	the	need	for	rescanning	the	database	
to	calculate	the	utility.

•	 It	 executes	 faster	 than	 IHUP,	 UP-	Growth,	 and	 UP-	
Growth+	 tree-	based	 algorithms	 according	 to	 experi-
ments	on	real	and	synthetic	datasets.

The	rest	of	this	paper	is	organized	as	follows.	Section	2	
provides	a	formal	introduction	to	the	problem	of	mining	
HUIs,	 along	 with	 related	 work.	 The	 procedures	 of	 con-
structing	the	proposed	trees,	UCT	and	SUT,	and	proposed	
algorithm	incorporating	novel	pruning	strategies	are	out-
lined	in	Section	3.	The	results	of	performance	evaluation	
are	reported	in	Section	4.	Section	5	concludes	the	paper.

2  |   BACKGROUND

2.1  |  Preliminaries

Given	 a	 transaction	 database	 D	 with	 n	 distinct	 items	
I =

{
i1, i2, . . . , in

}
,	each	transaction	Td	in	D	is	identified	by	

the	transaction	identifier	TID	and	records	a	collection	of	
items	 purchased,	 along	 with	 their	 quantities	 or	 internal	

utility	(Table	1B).	The	ordered	pair	
(
ix , qx

)
	in	each	transac-

tion	indicates	that	an	item	ix	was	purchased	in	a	quantity	
of	qx	in	that	transaction.	Each	item	is	also	associated	with	
the	unit	profit	or	external	utility	(Table	1A).

Definition 1	 (Utility	of	an	item)	The	utility	u
(
i,Td

)
	of	

an	item	i	in	a	transaction	Td	is	measured	as	the	prod-
uct	of	the	quantity	q

(
i,Td

)
	and	unit	profit	p (i).

Definition 2	 (Utility	of	an	itemset)	The	utility	u
(
X ,Td

)
	

of	 an	 itemset	 X 	 in	 a	 transaction	Td	 is	 defined	 as	∑
i∈X∧X⊆Td

u
�
i,Td

�
.

Definition 3	 (Utility	of	an	 itemset	 in	a	database).	The	
utility	u (X )	of	an	itemset	X 	in	D	is	defined	as

for	example,

The	 utility	 measure	 is	 neither	 anti-	monotone	 nor	
monotone.	The	utility	of	a	few	subsets	of	{5, 1, 2}	is	com-
pared	in	Table	2.	While	the	support	 is	strictly	 increasing	
across	the	subsets,	the	utility	is	neither	increasing	nor	de-
creasing.	Hence,	while	the	support	of	an	itemset	is	down-
ward	closed,	the	utility	measure	is	not.

u (X ) =
∑

X ⊆Td ∧Td ∈D

u
(
X ,Td

)
.

u
(
{2} ,T2

)
=4×2=8

u
(
{2, 3} ,T2

)
=u

(
{2} ,T2

)
+u

(
{3} ,T2

)
=8+3=11

u ({2, 3}) =u
(
{2, 3} ,T1

)
+u

(
{2, 3} ,T2

)
+u

(
{2, 3} ,T5

)

=11+11+6=28

T A B L E   1   Sample	database

(A) Profit Table

Item 1 2 3 4 5 6 7

Profit 5 2 1 2 3 5 1

(B) Transaction Table

TID Transaction

T1 {(3,1)(5,1)(1,1)(2,5)(4,3)(6,1)}

T2 {(3,3)(5,1)(2,4)(4,3)}

T3 {(3,1)(1,1)(4,1)}

T4 {(3,6)(5,2)(1,2)(7,5)}

T5 {(3,2)(5,1)(2,2)(7,2)}

T A B L E   2   Support	vs	Utility

Itemset Support Utility

{5, 1, 2} 1 18

{5, 1} 2 24

{1} 3 20
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Definition  4	 (Transaction	 Utility	 (TU))	 The	 TU	
TU

(
Td

)
	of	a	transaction	Td	is	defined	as	the	sum	of	

the	utilities	of	all	the	items	in	that	transaction,	that	
is,	

∑
i⊆Td

u
�
i,Td

�
,

Definition 5	 (High	Utility	Itemset	(HUI))	An	itemset	X 	
is	called	a	HUI	if	u (X ) ≥min_util,	where	min_util	is	
the	minimum	utility	provided	by	the	user.

For	 instance,	 if	 the	 threshold	 is	 set	 to	 35%,	 then	
min_util = 0.35 × 96 = 33.6,	where	96	is	the	sum	of	the	TU	
of	all	the	transactions	in	the	sample	database.	Then,	HUIs	
for	this	threshold	are	{2, 4, 5},	{2, 3, 5},	and	{3, 5, 2, 4},	with	
utilities	of	36,	37,	and	40,	respectively.

Definition  6	 (Transaction	 Weighted	 Utility	 (TWU)).	
The	 TWU	 TWU (X )	 of	 an	 itemset	 X 	 is	 de-
fined	 as	 the	 sum	 of	 the	 transaction	 utility	 of	 all	
the	 transactions	 in	 D	 that	 contain	 X ,	 that	 is,	
TWU (X ) =

∑
X⊆Td∧Td∈D

TU (Td).
Definition  7	 (High-	transaction	 Weighted	 Utility	

Itemset	 (HTWUI)).	 An	 itemset	 X 	 is	 a	 HTWUI,	
if	 TWU (X ) ≥min_util.	 If	 an	 itemset	 X 	 is	 not	 a	
HTWUI,	then	it	cannot	be	a	HUI.

Property  1	 (TWU	 Downward	 Closure	 Property).	 If	
an	 itemset	 X 	 is	 a	 HTWUI,	 then	 all	 its	 subsets	 are	
HTWUIs,	or	if	an	itemset	X 	 is	not	a	HTWUI,	then	
none	of	its	supersets	can	be	a	HTWUI.

For	 instance,	TWU ({3, 1, 2}) = 30 <min_util.	 Hence,	
higher-	order	 itemsets	 need	 not	 be	 enumerated	 from	
{3, 1, 2}	as	this	property	ensures	they	are	neither	HTWUI	
nor	HUI.

2.2  |  Related work

Algorithms	for	mining	frequent	itemsets	explore	the	com-
binatorial	search	space	by	employing	the	downward	clo-
sure	 property	 with	 respect	 to	 the	 support	 of	 an	 itemset.	
However,	 the	measure	of	utility	 is	not	downward	closed	
(Definition	 3).	 Yao	 et	 al.	 [5,6]	 performed	 a	 theoretical	
analysis	of	mining	HUIs	for	 the	first	 time.	In	this	study,	
the	 authors	 proposed	 two	 properties,	 namely,	 utility	
bound	 property	 and	 its	 extension,	 support	 bound	 prop-
erty,	as	heuristic	for	pruning	the	search	space.	While	this	
work	 formalized	 the	 problem	 of	 HUIM,	 the	 proposed	
heuristic	could	not	discover	a	complete	set	of	HUIs.	The	
property	of	the	TWU	to	be	downward	closed	was	proposed	
by	Liu	et	al.	[7–	9].	The	two-	phase	algorithm	proposed	by	
these	authors	employed	the	TWU	to	enumerate	candidate	
patterns	in	a	level-	wise	manner	analogous	to	the	Apriori	
algorithm	 [10].	 The	 candidate	 generation	 phase	 of	 this	
algorithms	 outputs	 all	 the	 k-	itemsets	 that	 are	 HTWUIs	

and	 whose	 utility	 calculation	 is	 performed	 by	 scanning	
the	database	again,	which	is	the	second	phase	of	the	algo-
rithm.	Overall,	(k + 1)	scans	are	required	to	output	HUIs	
of	length	k.

Another	 category	 of	 algorithms	 resulting	 in	 sig-
nificant	 performance	 gains	 are	 tree-	based	 algorithms	
[11–	15].	These	algorithms	transform	the	database	into	
a	 compressed	 tree	 structure	 with	 at	 most	 two	 data-
base	scans.	Items	that	do	not	have	the	TWU	of	at	least	
min_util	 are	 discarded,	 while	 the	 remaining	 items	 of	
the	transactions	are	arranged	in	a	predetermined	order	
(for	 example,	 descending	 or	 ascending)	 of	 the	 item	
TWU	or	the	lexicographic	order.	The	tree	construction	
is	 similar	 to	 the	 FP-	tree	 construction	 procedure	 [16].	
In	particular,	the	TWU	[12]	or	TU	[13]	is	stored	instead	
of	 storing	 the	 utility	 of	 items	 in	 the	 node	 of	 the	 tree.	
To	 promote	 access	 to	 the	 nodes	 of	 the	 tree	 that	 carry	
similar	 items	 in	 different	 branches,	 a	 header	 table	 is	
also	 constructed.	 This	 table	 is	 scanned	 from	 the	 bot-
tom	 to	 obtain	 conditional	 pattern	 trees.	 Each	 item	 in	
the	tree	is	then	appended	to	the	item	whose	conditional	
tree	is	constructed	and	output	as	a	candidate.	Pruning	
strategies	 play	 a	 vital	 role	 in	 reducing	 the	 number	 of	
candidates.	 In	 this	 regard,	 the	 UP-	Growth	 algorithm	
[14]	 discards	 the	 items	 that	 are	 unpromising	 in	 local	
conditional	trees	(the	DLU	strategy)	and	decreases	the	
utilities	of	the	remaining	items	by	the	utility	of	the	dis-
carded	 items	 (the	 DLN	 strategy).	 These	 strategies	 are	
further	tightened	by	using	minimal	node	utilities	in	the	
UP-	Growth+	algorithm	[15].

List-	based	 algorithms	 such	 as	 HUI-	Miner	 [17]	 and	
FHM	eliminate	candidate	generation	entirely.	They	adopt	
the	depth-	first	search	strategy	and	its	valid	extensions	in	
a	single	phase	to	mine	patterns	by	transforming	the	data-
base	information	into	a	utility	list	(UL)	structure.	Initially,	
a	UL	is	constructed	for	every	item	whose	TWU	is	at	least	
min_util.	 Based	 on	 a	 predetermined	 order,	 items	 are	 ex-
tended	 recursively.	 Utility	 information	 remains	 intact	
in	 the	 list	 and	 is	 accumulated	 as	 the	 lists	 are	 combined	
during	the	extension	of	the	item.	Hence,	unlike	the	tree-	
based	algorithms,	the	second	phase	of	rescanning	the	da-
tabase	for	utility	calculation	is	not	required.	The	pruning	
strategy	aims	mainly	at	determining	the	valid	extensions	
of	an	itemset.	In	this	regard,	U-	Prune	proposed	for	HUI-	
Miner	was	extended	in	HUP-	Miner	[18]	by	adopting	two	
more	pruning	strategies,	namely,	PU-	Prune	and	LA-	Prune,	
that	use	the	utility	information	stored	in	partitioned	ULs.	
The	 FHM	 algorithm	 [19]	 uses	 the	 estimated	 utility	 co-	
occurrence	structure	to	store	the	TWU	of	two	itemsets	for	
faster	lookup.

Projection-	based	 algorithms	 have	 proven	 to	 be	 more	
efficient	 than	 list-	based	 algorithms	 [20].	 EFIM	 [21]	 and	
d2hup	[22,23]	are	examples	of	projection-	based	algorithms.	
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EFIM	uses	 local	 tree	and	sub-	tree	utility	pruning	strate-
gies	in	conjunction	with	a	database	projection	technique	
for	faster	exploration	of	the	search	space,	while	d2hup	ex-
plores	search	space	via	a	reverse	set	enumeration	tree	and	
makes	use	of	the	chain	of	accurate	utility	lists	for	utility	
computation.	 Using	 real	 and	 synthetic	 datasets,	 the	 em-
pirical	study	conducted	by	Zhang	et	al.	[20]	demonstrated	
the	 superior	 performance	 of	 EFIM	 and	 d2hup	 on	 dense	
and	sparse	datasets,	respectively.	However,	a	recent	study	
modeling	the	utility	measure	via	subadditivity	and	mono-
tonicity	has	revealed	that	neither	list-		nor	projection-	based	
algorithms	perform	the	best	at	all	times	[24].

Pattern-	growth	 tree-	based	 algorithms	 for	 HUIM	 con-
struct	conditional	pattern	trees	during	recursive	enumer-
ation	 of	 itemsets.	 This	 procedure	 requires	 a	 significant	
amount	 of	 memory,	 especially	 for	 dense	 datasets.	While	
list	structures	offer	tighter	upper	bounds	on	the	utility	to	
facilitate	 effective	 pruning,	 the	 construction	 of	 ULs	 in-
volves	significant	comparison	overhead.	Further,	when	an	
itemset	X 	 is	extended	with	any	of	 its	valid	extensions,	 it	
is	possible	that	they	do	not	co-	occur	in	any	transactions,	
thus	 waste	 CPU	 cycles	 for	 comparison	 operations.	 This	
can	be	avoided	by	employing	a	prefix	tree	with	bottom-	up	
traversal.	Enumerated	itemsets	are	guaranteed	to	be	valid	
patterns.	Nevertheless,	candidates	are	outputted	only	 to-
ward	the	end	of	the	first	phase.	Revisiting	the	transaction	
database	 for	 the	 utility	 calculation	 incurs	 a	 significant	
input/output	 cost.	 Several	 studies	 highlight	 the	 signifi-
cance	of	the	compact	representation	of	transaction	data-
bases	for	FIM	[25,26].	Hence,	this	study	aims	to	compress	
the	entire	database	on	a	per	transaction	basis	and	leverage	
the	 advantages	 of	 the	 prefix	 tree	 for	 mining	 HUIs	 effi-
ciently.	While	the	prefix	tree	provides	with	valid	patterns,	
the	compressed	tree	structure	with	utility	information	can	
be	accessed	to	output	the	HUIs	without	rescanning	the	da-
tabase,	that	is,	ensuring	the	utility	computation	in	a	single	
phase.

3  |   METHODOLOGY

A	majority	of	tree-	based	algorithms	eliminate	unprom-
ising	 items	during	 the	 initial	 tree	construction	and	re-
quire	 two	 scans	 of	 the	 database.	 This	 section	 presents	
two	tree	structures	(UCT	and	SUT)	that	are	constructed	
using	 a	 single	 scan	 by	 incorporating	 all	 items.	 While	
both	 structures	 ensure	 prefix	 sharing,	 UCT	 is	 con-
structed	on	per	item	basis,	whereas	SUT	is	constructed	
on	per	transaction	basis.	Subsection	3.1	introduces	the	
tree	 structures	 and	 their	 respective	 construction	 pro-
cedures.	 Subsection	 3.2	 details	 the	 mining	 procedure	
using	 these	 trees,	along	with	 the	pruning	strategy	and	
SPUC	algorithm.

3.1  |  Proposed data structures

3.1.1	 |	 Utility	count	tree

A	node	in	the	UCT	has	the	following	fields:

1.	 item	 denoting	 the	 name	 of	 an	 item;
2.	 count	denoting	the	count	of	an	item	in	the	given	path	of	

the	tree;
3.	 nodeUtility	denoting	the	accumulated	utility	of	an	item	

in	the	given	path	of	the	tree;
4.	 parent	pointing	to	the	parent	of	the	node.

Utility	 Count	 Tree	 is	 constructed	 without	 discarding	
any	 items	 during	 the	 initial	 tree	 construction.	The	 data-
base	 is	 scanned,	 and	 a	 node	N	 is	 constructed	 for	 every	
item	in	a	 transaction	Tj.	Algorithm	1	outlines	 the	proce-
dure	of	inserting	transactions	into	UCT.	Initially,	N	is	set	
to	the	root	node	of	the	tree.	Items	in	a	transaction	are	ar-
ranged	in	ascending	order	and	inserted	as	child	nodes	of	
one	another.	Hence,	each	path	of	the	tree	corresponds	to	
a	particular	transaction.	If	a	transaction	contains	a	node	
that	is	already	present	in	the	tree,	the	procedure	updates	
the	count	and	utility	instead	of	creating	a	new	node	in	the	
given	 path.	 This	 ensures	 prefix	 sharing.	 Figure	 1	 shows	
UCT	for	the	sample	database	presented	in	Table	1.

3.1.2	 |	 String	utility	tree

Unlike	UCT,	SUT	captures	transaction-	level	information	
in	a	node,	resulting	in	a	more	compact	representation	of	
a	transaction	database	compared	with	FP-	tree-	like	struc-
tures.	A	node	in	SUT	has	the	following	fields:
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1.	 stringItems	 denoting	 the	 concatenation	 of	 items	 pur-
chased	 in	 a	 transaction;

2.	 TU	denoting	the	TU	of	a	transaction;
3.	 stringUtilities	denoting	the	concatenation	of	utilities	of	

corresponding	items;
4.	 parent	pointing	to	the	parent	of	the	node.

Algorithm	 2	 outlines	 the	 construction	 procedure	 of	
SUT.	 Once	 the	 items	 of	 a	 transaction	Tj	 are	 arranged	 in	
ascending	order,	they	are	concatenated	using	a	delimiter	
such	as	x	and	stored	in	the	stringItems	field.	The	utilities	
are	indexed	per	the	order	of	the	items	and	concatenated	
in	a	similar	manner.	As	each	node	corresponds	to	a	trans-
action,	 the	 tree	 offers	 a	 compact	 representation	 without	
eliminating	any	items.	To	ensure	prefix	sharing,	substring	
comparison	is	performed	to	check	whether	the	stringItems	
of	a	transaction	Tj	is	present	in	existing	nodes	of	the	tree	
(line	 11).	 If	 there	 is	 a	 match,	 then	 the	 new	 node	 is	 ap-
pended	as	the	child	of	this	existing	node.	Figure	2	shows	
SUT	for	the	sample	database	presented	in	Table	1.

3.2  |  Proposed SPUC algorithm

A	path	for	a	node	in	UCT	is	a	list	containing	items	from	
this	node	to	the	root.	The	nodeUtility	field	of	a	node	stores	
the	cumulated	utility	value	of	 the	 item	 the	node	 repre-
sents.	 This	 value	 is	 the	 sum	 of	 the	 utilities	 of	 the	 item	
in	different	transactions	sharing	a	common	prefix.	From	
the	header	list,	if	the	node	link	for	an	item	is	traversed,	
then	the	sum	of	the	nodeUtility	fields	denotes	the	utility	
of	 the	 item	 in	 the	 transaction	 database.	 With	 this	 item	

as	suffix,	each	path	of	the	node	is	the	prefix	path	for	this	
item.	To	mine	UCT,	the	header	list	is	traversed	from	the	
bottom.	The	prefix	path(s)	for	each	item	is	(are)	obtained,	
which	forms	the	conditional	pattern	base	(CPB)	for	the	
item.	The	sum	of	nodeUtility	fields	of	all	items,	including	
the	suffix,	is	also	calculated	for	each	prefix	path,	which	
denotes	the	path	utility.	All	possible	subsets	from	prefix	
paths	containing	the	suffix	item	are	then	generated.	The	

F I G U R E   1   Utility	Count	Tree	(UCT)	for	the	database	presented	in	Table	1
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rationale	here	is	that	these	items	represent	the	database	
conditioned	on	the	suffix	item.	Hence,	it	is	sufficient	to	
mine	only	the	k-	itemsets	generated	from	these	items.	The	
value	of	k	ranges	from	one	to	the	length	of	the	considered	
prefix	path.

Once	the	different	subsets	of	a	prefix	path	in	the	CPB	
of	an	 item	are	obtained,	 the	actual	utility	value	of	 them	
cannot	be	obtained	from	UCT.	Hence,	SUT	is	employed	in	
mining.	The	utility	of	each	itemset	is	accumulated	using	
level-	order	 traversal.	 As	 each	 node	 in	 SUT	 represents	 a	
transaction,	 the	accumulated	utility	value	 for	an	 itemset	
post	 the	 traversal	 denotes	 its	 real	 utility	 value.	 The	 fol-
lowing	strategy	is	adopted	to	enable	efficient	search	of	an	
itemset	in	SUT.

•	 First,	a	check	for	the	presence	of	the	suffix	item	in	the	
current	 node	 is	 performed	 instead	 of	 the	 entire	 item-
set.	The	node	is	examined	for	the	presence	of	the	entire	
itemset	only	if	it	contains	the	suffix	item.	Subsequently,	
the	current	node's	children	are	also	examined.

•	 If	 the	 node	 does	 not	 contain	 the	 suffix	 item,	 the	 next	
sibling	is	considered	without	examining	the	contents	of	
the	current	node	or	any	of	its	children.

This	 procedure	 exploits	 the	 characteristic	 of	 SUT	
and	knowledge	of	 the	 suffix	 item	being	considered.	 If	
a	 node	 does	 not	 contain	 the	 suffix	 item,	 then	 none	 of	
its	 children	 will	 contain	 this	 item	 since	 the	 children	
of	a	node	 in	SUT	are	 substrings	completely	contained	
in	its	parent.	Furthermore,	all	subsets	are	formed	con-
ditioned	 on	 this	 suffix	 item.	 Hence,	 it	 is	 sufficient	 to	
check	for	the	suffix	before	examining	for	the	presence	
of	the	entire	itemset.

The	following	pruning	strategy	has	been	proposed	by	
us	to	improve	the	efficiency	of	the	mining	process:

Theorem 1 If the sum of path utilities for an item is lower 
than min_util, then no itemset from the CPB will be a 
HUI, and hence, these itemsets need not be generated 
and evaluated.

Case	1	(Isolated	path):	An	isolated	path	is	a	non-	prefix	
sharing	path	in	a	tree.	Hence,	nodeUtility	 for	all	 items	is	
the	 utility	 value.	 For	 any	 suffix	 item	 ik	 in	 this	 path,	 the	
path	utility	is	the	utility	of	the	largest	k-	itemset	possible.	
For	any	subset	of	this	k-	itemset	that	contains	ik	as	the	suf-
fix,	 the	 utility	 cannot	 exceed	 the	 utility	 of	 the	 largest	k
-	itemset,	 that	 is,	 the	 path	 utility.	 Hence,	 if	 this	 utility	 is	
lower	than	min_util,	 the	utility	of	the	subsets	cannot	ex-
ceed	min_util.	Therefore,	the	subsets	for	the	paths	in	the	
CPB	do	not	need	to	be	generated	with	respect	to	the	suffix.

Case	2	(Non-	isolated	path):	In	the	case	of	prefix	shar-
ing,	nodeUtility	has	the	utility	value	greater	than	the	real	
utility	value,	that	is,	it	denotes	the	sum	of	the	utilities	of	
different	 transactions	 along	 the	 path	 for	 an	 item.	 Thus,	
any	subset	formed	for	the	suffix	item	ik	will	have	a	utility	
lower	than	the	path	utility.	If	two	or	more	prefix	paths	are	
present	for	ik	and	a	common	subset	exists,	the	sum	of	the	
utilities	of	subsets	will	always	be	 lower	 than	the	sum	of	
the	path	utilities	(since	individually,	every	utility	is	lower	
than	the	path	utility	of	the	path	they	occur	in).

An	example	of	mining	employing	UCT,	SUT,	and	the	
proposed	pruning	strategy	is	described	below.

•	 Consider	 mining	 HUIs	 for	 itemsets	 with	 a	 suffix	 item	
7.	 As	 the	 header	 list	 is	 traversed,	 two	 prefix	 paths	 are	
obtained,	 namely,	 P1: ⟨1, 3, 5, 7⟩	 and	 P2: ⟨2, 3, 5, 7⟩	,	
with	 path	 utilities	 pu1 = 38 (5 + 6 + 7 + 20)	 and	
pu2 = 22 (2 + 3 + 5 + 12),	 respectively	 (Figure	 1).	 This	
forms	the	CPB	for	item	7	as	shown	in	Table	3.	If	min_util	
is	set	to	30,	then	item	7	is	not	pruned	as	the	sum	of	the	
path	utilities	(38 + 22 = 60)	exceeds	min_util.

•	 Subsets	with	suffix	7	can	be	generated	using	these	prefix	
paths.	Since	both	paths	have	a	 length	of	4,	 the	 largest	
possible	subset	is	of	length	four.	When	the	prefix	path	

F I G U R E   2   String	Utility	Tree	(SUT)	for	the	sample	database	presented	in	Table	1

T A B L E   3   Conditional	pattern	base	for	item	7

Prefix Path Items Path Utility

P1 1, 3, 5, 7 38

P2 2, 3, 5, 7 22
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P1	is	considered	from	the	CPB,	the	generated	subsets	are	
{{7} , {1, 7} , {3, 7} , {5, 7} , {1, 3, 7} , {1, 5, 7} , {3, 5, 7} ,

{1, 3, 5, 7}}.
•	 Next,	 SUT	 is	 traversed	 to	 obtain	 the	 utilities	 of	 these	

itemsets.	The	traversal	of	SUT	begins	from	its	root	node.	
The	first	match	to	the	suffix	occurs	at	node	1x3x5x7.	The	
utilities	of	all	itemsets	are	obtained	from	the	utility	field	
of	this	node	and	are	recorded	in	the	hash_item_utilites	
hash	table.	A	snapshot	of	this	table	is	shown	in	Table	4.

•	 The	 next	 sibling	 found	 during	 traversal,	 that	 is,	
2x3x5x7	,	contains	the	suffix.	However,	only	the	itemsets	
{7} , {3, 7} , {5, 7} , and {3, 5, 7}	are	examined	as	present	
in	this	node,	and	their	utilities	are	updated	in	the	hash	
table	as	shown	in	Table	5.

•	 Once	 the	 traversal	 is	 complete,	 the	 next	 pre-
fix	 path,	 P2,	 is	 selected	 from	 the	 CPB.	
The	 subsets	 generated	 from	 this	 path	 are	
{{7} , {2, 7} , {3, 7} , {5, 7} , {2, 3, 7} , {2, 5, 7} , {3, 5, 7} , {2, 3, 5, 7}}	.	
Since	 the	 itemsets	 {{7} , {3, 7} , {5, 7} , {3, 5, 7}}	
have	 already	 been	 generated	 in	 P1	 and	 ex-
amined,	 only	 the	 remaining	 itemsets,	 that	 is,	
{{2, 7} , {2, 3, 7} , {2, 5, 7} , {2, 3, 5, 7}}	 are	 taken	 up	 for	
mining.	The	utilities	of	 these	 itemsets	are	 recorded	 in	
hash_item_utilites	as	shown	in	Table	6.

•	 The	 above	 procedure	 is	 repeated	 for	 all	 items	 of	
the	 header	 list	 in	 a	 bottom-	up	 manner.	 Eventually,	
hash_item_utilities	is	filtered	to	retain	only	those	item-
sets	whose	utility	is	at	least	min_util.

3.2.1	 |	 Enhancing	the	mining	process

As	demonstrated	 in	 the	above	example,	 there	 is	a	possi-
bility	that	the	prefix	paths	within	a	CPB	can	generate	the	
same	subsets.	While	the	same	subsets	are	not	considered	
during	SUT	 traversal	 for	 the	utility	calculation,	 they	are	
still	generated.	To	tackle	this	problem,	the	CPB	is	checked	
for	 the	presence	of	a	path	 that	 contains	all	 the	different	
items	in	the	CPB.	Such	a	path	has	to	be	the	longest	path,	
with	the	length	equal	to	the	suffix	item	being	considered.	
Such	a	path	will	generate	all	possible	 subsets,	 including	
those	generated	by	the	remaining	prefix	paths	in	the	CPB.

Consider	the	suffix	item	5.	The	possible	prefix	paths	are	
P1: ⟨1, 2, 3, 4, 5⟩,	P2: ⟨1, 3, 5⟩,	P3: ⟨2, 3, 4, 5⟩,	and	P4: ⟨2, 3, 5⟩	.	
Here,	the	longest	prefix	path	with	a	length	equal	to	the	suf-
fix	item	is	P1.	The	subsets	generated	out	of	P1	include	those	
generated	by	the	paths	from	P2	to	P4.	Hence,	it	is	sufficient	
to	 generate	 subsets	 from	P1	 for	 subsequent	 mining.	 The	
remaining	paths	can	be	ignored	when	generating	subsets.

Once	 the	 subsets	 corresponding	 to	 a	 prefix	 path	 are	
generated,	 their	 utilities	 can	 be	 obtained	 by	 traversing	
SUT.	The	nodeUtility	value	stored	in	UCT	is	employed	to	
reduce	the	number	of	the	subsets	being	evaluated	for	the	
utility	computation.	The	nodeUtility	values	corresponding	
to	 every	 item	 in	 the	 CPB	 are	 accumulated	 as	 the	 prefix	
paths	 are	 determined.	 This	 results	 in	 an	 overestimated	
utility	value	that	can	be	employed	to	filter	itemsets	as	ex-
plained	below	using	the	subsets	of	P1	of	CPB (7).

T A B L E   4   Utilities	of	subsets	of	P1	in	hash_item_utilites	after	
examining	the	node	1x3x5x7

Itemset Utility

{7} 5

{1, 7} 15

{3, 7} 11

{5, 7} 11

{1, 3, 7} 21

{1, 5, 7} 21

{3, 5, 7} 17

{1, 3, 5, 7} 27

T A B L E   5   Utilities	of	subsets	of	P1	in	hash_item_utilites	after	
examining	the	node	2x3x5x7

Itemset Utility

{7} 7

{1, 7} 15

{3, 7} 15

{5, 7} 16

{1, 3, 7} 21

{1, 5, 7} 21

{3, 5, 7} 24

{1, 3, 5, 7} 27

T A B L E   6   Utilities	of	subsets	of	P2	in	hash_item_utilites	after	
examining	the	node	2x3x5x7

Itemset Utility

{7} 7

{1, 7} 15

{3, 7} 15

{5, 7} 16

{1, 3, 7} 21

{1, 5, 7} 21

{3, 5, 7} 24

{1, 3, 5, 7} 27

{2, 7} 6

{2, 3, 7} 8

{2, 5, 7} 9

{2, 3, 5, 7} 11
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•	 An	overestimated	utility	(OU)	table	for	CPB (7)	accumu-
lates	the	nodeUtility	values	corresponding	to	every	item	
in	CPB (7).	The	OU	values	are	accumulated	as	and	when	
items	are	added	to	the	prefix	path	of	the	CPB.	Table	7	
shows	 the	 OU	 values	 for	 items	{1, 2, 3, 5, 7}	 that	 form	
CPB (7).	 Items	{1},	{2}	 are	 present	 only	 in	 P1	 and	 P2	;	
their	OUs	hold	the	corresponding	nodeUtility	values	of	
20	and	12,	respectively.	However,	the	OUs	of	the	other	
items	 in	 both	P1	 and	P2	 are	 also	 accumulated,	 that	 is,	
OU ({3}) = P1 ({3}) .nodeUtility + P2 ({3}) .nodeUtility = 7 + 5 = 12	.

•	 Next,	OUs	of	different	subsets	formed	from	P1	are	deter-
mined	using	the	above-	mentioned	OU	table	(Table	8).	
It	can	be	observed	from	Table	8	that	only	the	itemsets	
{1, 3, 7},	{1, 5, 7},	 and	{1, 3, 5, 7}	 have	 their	 OUs	 above	
the	min_util	 of	 30.	 Hence,	 only	 the	 utilities	 of	 these	
itemsets	 are	 computed	 using	 SUT	 (which	 is	 different	
from	Tables	4	and	5).

This	 strategy	 further	 enhances	 the	 mining	 process	
in	 conjunction	 with	 the	 pruning	 strategy	 provided	 in	
Theorem	1.

Algorithm	3	lists	the	SPUC	algorithm	that	incorporates	
the	proposed	pruning	strategy.	SPUC	takes	two	trees	(UCT	
and	SUT)	and	the	min_util	values	provided	by	the	user	as	
inputs.	 A	 global	 hash	 map	 acts	 as	 a	 table	 for	 storing	 the	
utilities	of	subsets	generated	from	different	prefix	paths	as	
shown	in	line	1.	A	bottom-	up	procedure	is	then	initiated	to	
obtain	the	CPB	of	items	for	subsequent	mining	(lines	2	to	

18).	After	calculating	the	path	utilities	for	each	prefix	path,	
the	pruning	strategy	(Theorem	3.2)	is	applied	(line	4).	The	
mining	 procedure	 considers	 the	 next	 item	 in	 the	 header	
list	if	the	sum	of	the	path	utilities	is	not	at	least	min_util.		

T A B L E   7   Overestimated	utility	table	corresponding	to	items	
of	CPB (7)

Itemset OU

{1} 20

{2} 12

{3} 12

{5} 9

{7} 7

T A B L E   8   Overestimated	utility	table	of	subsets	in	P1	of	CPB (7)

Itemset OU

{7} 7

{1, 7} 27

{3, 7} 19

{5, 7} 16

{1, 3, 7} 39

{1, 5, 7} 36

{3, 5, 7} 28

{1, 3, 5, 7} 48
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For	 items	 that	 satisfy	 this	 condition,	 the	 longest	 path	 is	
searched	to	avoid	generating	subsets	from	each	path	in	the	
CPB	(lines	5	to	7).	Itemsets	that	are	subsets	of	each	prefix	
path	and	contain	only	 the	 suffix	 item	are	 then	generated	
(line	9).	 subset_List	keeps	 track	of	different	 itemsets	gen-
erated	from	the	prefix	paths	considered	till	the	current	one	
and	thus	can	be	used	to	eliminate	any	subsets	common	to	
any	of	the	previous	paths	(lines	10	and	11).	As	the	OUs	of	
the	itemsets	are	determined,	only	those	itemsets	whose	OU	
exceeds	 the	 threshold	are	 retained	 in	itemset_list	 (line	12	
to	 16).	The	 procedure	 Mine	 takes	 the	 filtered	itemset_list	
as	 input	and	starts	searching	for	 the	presence	of	 itemsets	
from	the	root	of	SUT	(line	23	 to	32).	Line	24	 is	 the	 sum-
mary	of	the	search	strategy	explained	before.	If	the	suffix	is	
absent	in	the	current	SUT	node,	then	none	of	the	itemsets	
in	itemset_list	will	be	present	in	the	current	node.	Hence,	
the	 search	 proceeds	 with	 the	 next	 sibling	 after	 the	 break	
(line	34).	The	utility	of	the	itemset	is	calculated	and	added	
to	hash_item_utilities	if	not	present	already	(lines	26	to	30).	
Traversal	is	continued	as	shown	in	lines	38	to	40	to	mine	
itemsets	from	the	child	of	the	current	node	or	move	to	sib-
lings	if	the	suffix	item	is	not	present.

3.3  |  Complexity analysis

The	longest	path	in	the	CPB	of	an	item	is	identified	using	
the	assumption	that	its	length	matches	the	location	of	the	
item	in	the	header	list	of	UCT.	If	such	a	path	exists,	then	the	
number	of	subsets	with	this	item	as	prefix	is	2n−1	(assum-
ing	that	 the	sum	of	 the	path	utilities	of	 this	 item	exceeds	
min_util).	 However,	 if	 such	 a	 path	 is	 absent,	 then	 in	 the	
worst	case,	all	prefix	paths	in	the	CPB	have	to	be	examined	
for	generating	subsets.	Hence,	the	computation	load	due	to	
item	 i	depends	on	the	number	of	prefix	paths	 in	 its	CPB.	
Furthermore,	the	subsets	of	 item	 i	will	visit	each	node	in	
SUT	and	perform	the	utility	calculation	when	a	match	 is	
found.	Subsequently,	the	subsets	of	i	will	visit	all	child	nodes	
as	well.	The	utility	computation	is	a	trivial	retrieval	opera-
tion,	whereas	the	number	of	node	visits	during	mining	is	a	
major	component	that	adds	to	the	complexity.	Overall,	the	
complexity	can	be	computed	as	the	total	number	of	subsets	
generated	for	n	items	in	the	header	list	of	UCT.

Hence,	the	computational	complexity	of	the	proposed	
algorithm	is	� (2n).

The	tree	structures	are	constructed	using	a	single	da-
tabase	scan	without	eliminating	any	items.	To	determine	

the	amount	of	memory	taken	by	the	two	tree	structures,	
let	|D|	denote	the	total	number	of	transactions	in	the	data-
base	and	b	denote	the	number	of	bytes	taken	up	to	allocate	
memory	for	a	field	of	a	node	in	a	tree.	In	the	worst	case	
scenario,	the	sum	of	the	numbers	of	nodes	in	each	level	of	
UCT	can	determine	the	memory	upper	bound.

As	UCT	has	three	fields	in	each	node,	the	total	space	
taken	 is	 upper-	bounded	 by	

3b∗

(
0+

(
n

1

)
+

(
n

2

)
+ ⋅ ⋅ ⋅ +

(
n

n

))
=3b∗ (2n−1) bytes	.	

Hence,	 in	 the	worst	case,	UCT	consumes	� (2n)	bytes	of	
memory.	A	tighter	upper	bound	on	the	memory	consumed	
by	SUT	can	be	provided	using	the	average	length	of	trans-
actions,	Tavg.	Each	of	the	fields	stringItems	and	stringUtili-
ties	consumes	b ∗ Tavg bytes,	and	an	additional	b	bytes	will	
be	 taken	 up	 by	 the	 TU	 field.	 Since	 the	 total	 number	 of	
nodes	 in	 SUT	 is	 |D|,	 the	 taken	 space	 is	
b ∗

(
2 ∗ |D| ∗ Tavg + 1

)
bytes.	Hence,	the	worst	case	mem-

ory	space	for	SUT	is	�
(
|D| ∗ Tavg

)
.

4  |   EXPERIMENTAL 
EVALUATION

To	evaluate	the	proposed	algorithm,	it	was	compared	with	
IHUP,	 UP-	Growth,	 and	 UP-	Growth+.	 The	 Java	 imple-
mentation	of	these	algorithms	is	provided	by	SPMF	[27].	
IHUPTWU	was	used	in	the	experiments	as	it	has	shown	
to	be	efficient	[13].	Foodmart	provided	by	SPMF	[28]	was	
used	a	real	dataset.	Furthermore,	three	synthetic	datasets,	
s1,	s2,	and	s3,	were	generated	using	the	transaction	data-
base	 generator	 included	 in	 the	 SPMF	 toolbox.	 For	 these	
datasets,	 the	 quantities	 of	 items	 (integral	 values)	 were	
generated	 in	 the	 range	 of	[1, 10]	 using	 a	 uniform	 distri-
bution,	while	 the	unit	profit	values	 followed	a	Gaussian	
distribution.	Table	9	summarizes	the	characteristics	of	the	

Number of prefix paths =2n−1+2n−2+ ⋅ ⋅ ⋅ +2+1

=2
(
2n−1−1

)

≈2n, for large values of n

Number of item nodes at depth 0=0 (the root node)

Number of item nodes at depth 1=n1
Number of itemnodes at depth 2=n2

⋮

Number of itemnodes at depthn=nn

T A B L E   9   Characteristics	of	Datasets

Dataset |D| |I| T Density (%)

Foodmart 4141 1559 4.4 0.28

s1 10 000 1000 5.5 0.054

s2 10 000 50 000 5.5 0.016

s3 10 000 100 000 5.4 0.013
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datasets,	where	|D|	denotes	the	number	of	transactions	in	
the	database,	|I|	denotes	 the	number	of	distinct	 items,	T	
denotes	the	average	number	of	items	per	transaction,	and	
Density	indicates	the	extent	to	which	each	dataset	is	sparse	
or	dense	and	is	calculated	as	T∕ |I|.	The	experiments	were	
conducted	on	a	Windows	7	computer	equipped	with	8	GB	
RAM	and	Intel	Core	i5	processor	working	at	3.00 GHz.

Section	4.1	presents	the	performance	evaluation	of	the	
proposed	pruning	strategies.	The	execution	time	of	SPUC,	
IHUP,	 UP-	Growth,	 and	 UP-	Growth+	 is	 compared	 in	
Section	4.2.	The	results	of	scalability	tests	using	synthetic	
datasets	are	presented	in	Section	4.3.

4.1  |  Evaluation of the 
pruning strategies

Foodmart	and	s2	datasets	were	used	to	evaluate	the	effec-
tiveness	of	the	proposed	pruning	strategies.	The	first	prun-
ing	 strategy	 that	 employs	 the	 path	 utility	 upper	 bound	
is	 denoted	 as	 SPUC_Prune (1)	 and	 the	 second	 pruning	
strategy	that	discards	the	itemsets	based	on	OU 	is	termed	
SPUC_Prune (2).	 Figure	 3	 compares	 the	 execution	 time	
when	 SPUC	 was	 executed	 with	 only	SPUC_Prune (1)	 as	

against	 both,	 that	 is,	 SPUC_Prune (1 + 2).	 For	 both	 the	
datasets,	across	higher	thresholds	the	difference	in	execu-
tion	 time	 was	 more	 evident.	SPUC_Prune (1)	 effectively	
prunes	 the	 items	 that	 appear	 at	 the	 top	 of	 the	 header	
list	due	to	their	 lower	path	utility.	Hence,	as	the	thresh-
old	 increases,	 SPUC_Prune (1)	 avoids	 determination	 of	
CPB	 for	 a	 greater	 number	 of	 items.	 In	 addition	 to	 this,	
SPUC_Prune (2)	ensures	lesser	itemsets	to	be	evaluated	for	
utility	computation	and	thus	completes	the	mining	faster.	
Overall,	an	improvement	of	0.8992%	and	23.41%	was	ob-
served	for	Foodmart	and	s2	datasets,	respectively.	Figure	
4	compares	the	pruning	strategies	in	terms	of	the	explored	
number	of	itemsets.	While	the	number	of	explored	candi-
date	itemsets	for	Foodmart	remained	same	up	to	min_util	
of	 1000	 for	 the	 first	 pruning	 strategy,	 SPUC_Prune (2)	
further	 pruned	 given	 this	 low	 threshold,	 thus	 reducing	
the	 mining	 time	 at	 low	 thresholds.	 The	 effectiveness	 of	
SPUC_Prune (2)	 in	 conjunction	 with	 SPUC_Prune (1)	
is	 more	 evident	 in	 the	 case	 of	 s2	 with	 a	 lower	 number	
of	 explored	 itemsets	 and	 a	 significant	 difference	 as	 the	
threshold	 increased.	 Overall,	 SPUC_Prune (1 + 2)	 im-
proved	the	mining	performance	by	reducing	the	number	
of	 candidates	 and	 hence	 was	 adopted	 for	 the	 remaining	
experiments.

F I G U R E   3   Comparison	of	the	pruning	strategy	in	terms	of	
their	execution	time

F I G U R E   4   Comparison	of	the	pruning	strategy	in	terms	of	the	
number	of	candidates
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4.2  |  Execution time comparison

Figure	5	shows	the	comparison	of	the	execution	times	of	
the	different	algorithms.	It	can	be	noticed	from	the	figure	
that	 the	 proposed	 SPUC	 algorithm	 clearly	 outperforms	
the	 other	 algorithms.	 The	 time	 taken	 for	 mining	 gradu-
ally	reduces	at	higher	min_util	due	to	the	lower	number	
of	 candidates.	 However,	 the	 difference	 in	 time	 for	 any	
two	consecutive	thresholds	is	significantly	higher	for	the	
benchmark	algorithms	(Table	10).	In	contrast,	the	execu-
tion	time	does	not	vary	significantly	in	the	case	of	SPUC.	
This	can	be	attributed	to	the	fact	that	SPUC	relies	on	UCT	
and	SUT	that	do	not	eliminate	any	items	as	unpromising;	
hence,	the	tree	structure	remains	the	same	across	all	the	
thresholds.	In	contrast,	the	benchmark	algorithms	elimi-
nate	unpromising	items	and	hence	explore	a	smaller	part	
of	the	search	space	for	mining.	In	addition,	the	recursive	
mining	procedure	 involves	 tree	construction	after	elimi-
nating	 local	 unpromising	 items.	 However,	 this	 is	 over-
come	 in	 the	 case	 of	 SPUC,	 where	 itemsets	 are	 directly	
generated	and	filtered.	Furthermore,	 the	utilities	are	de-
termined	on	the	 fly,	without	requiring	an	additional	da-
tabase	scan.	Table	11	lists	the	percentage	improvement	in	
the	execution	time	of	SPUC	over	IHUP,	UP-	Growth+,	and	
UP-	Growth.

4.3  |  Scalability test

Scalability	tests	were	conducted	to	determine	the	impact	of	
the	database	size	increase	in	terms	of	the	number	of	trans-
actions	on	the	performance	of	SPUC.	The	three	synthetic	
datasets	were	scaled	in	four	steps	by	inserting	10 000	trans-
actions	at	each	step.	Figure	6	shows	the	execution	times	of	

F I G U R E   5   Execution	time	of	the	algorithms	on	different	
datasets

T A B L E   1 0   Average	increase	in	the	execution	time	(s)

Dataset SPUC UP- Growth+ UP- Growth IHUP

Foodmart 0.073 0.493 1.890 2.450

s1 4.974 131.162 104.560 29.520

s2 3.860 92.580 81.550 48.450

s3 8.028 106.397 106.676 89.675

T A B L E   1 1   Percentage	improvement	of	the	proposed	algorithm	
compared	with	the	benchmark	algorithms	across	the	datasets

Datasets vs. 
Algorithms UP- Growth+ UP- Growth IHUP

Foodmart 18.370 22.143 31.760

s1 69.640 79.640 83.780

s2 81.820 82.310 82.340

s3 62.460 70.576 84.650
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SPUC	and	the	benchmark	algorithms.	While	all	the	algo-
rithms	showed	an	increase	in	the	execution	time	with	the	
increase	in	the	number	of	transactions,	the	execution	time	
of	SPUC	increased	by	a	small	margin.	This	is	because	the	
tree	 construction	 time	 required	 by	 the	 benchmark	 algo-
rithms,	which	use	two	scans,	builds	up	as	the	number	of	
transactions	to	be	processed	increases.	In	contrast,	SPUC	
constructs	the	two	trees	in	a	single	scan.	Furthermore,	un-
like	the	other	algorithms,	SPUC	completely	eliminates	the	
evaluation	of	candidates	for	the	utility	computation,	thus	
provides	better	scalability.

5  |   CONCLUSIONS

Tree-	based	algorithms	for	mining	HUIs	require	two	phases:	
(1)	constructing	a	tree	structure	and	mining	candidate	pat-
terns	and	(2)	rescanning	the	database	for	calculating	can-
didate	 utilities.	 This	 paper	 proposed	 two	 tree	 structures	
called	UCT	and	SUT.	While	SUT	stores	 transaction-	level	
information	 in	 a	 node,	 UCT	 stores	 item-	level	 informa-
tion.	 Furthermore,	 the	 paper	 presented	 a	 mining	 algo-
rithm	called	SPUC	for	mining	HUIs	 in	a	single	phase	by	
employing	new	pruning	strategies	based	on	the	path	and	
overestimated	 utility,	 respectively.	 In	 SPUC,	 UCT	 guides	
the	pattern	generation	process,	while	SUT	helps	in	calcu-
lating	candidate	utilities.	This	enables	SPUC	to	completely	
eliminate	the	second	phase	and	thus	outperform	existing	
tree-	based	algorithms	on	both	real	and	synthetic	datasets.

With	the	profound	improvement	 in	storage	technolo-
gies	and	explosion	of	data	generation	rate,	mining	itemsets	
is	considered	to	be	feasible	through	big	data	technologies	
such	as	MapReduce	and	Apache	Spark.	Accordingly,	we	
plan	to	extend	SPUC	for	mining	HUIs	in	distributed	envi-
ronments	and	very	large	datasets.
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