• Title/Summary/Keyword: Schwarz method

Search Result 31, Processing Time 0.027 seconds

AN OVERLAPPING SCHWARZ METHOD FOR SINGULARLY PERTURBED THIRD ORDER CONVECTION-DIFFUSION TYPE

  • ROJA, J. CHRISTY;TAMILSELVAN, A.
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.1_2
    • /
    • pp.135-154
    • /
    • 2018
  • In this paper, an almost second order overlapping Schwarz method for singularly perturbed third order convection-diffusion type problem is constructed. The method splits the original domain into two overlapping subdomains. A hybrid difference scheme is proposed in which on the boundary layer region we use the combination of classical finite difference scheme and central finite difference scheme on a uniform mesh while on the non-layer region we use the midpoint difference scheme on a uniform mesh. It is shown that the numerical approximations which converge in the maximum norm to the exact solution. We proved that, when appropriate subdomains are used, the method produces convergence of second order. Furthermore, it is shown that, two iterations are sufficient to achieve the expected accuracy. Numerical examples are presented to support the theoretical results. The main advantages of this method used with the proposed scheme are it reduce iteration counts very much and easily identifies in which iteration the Schwarz iterate terminates.

SCHWARZ METHOD FOR SINGULARLY PERTURBED SECOND ORDER CONVECTION-DIFFUSION EQUATIONS

  • ROJA, J. CHRISTY;TAMILSELVAN, A.
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.181-203
    • /
    • 2018
  • In this paper, we have constructed an overlapping Schwarz method for singularly perturbed second order convection-diffusion equations. The method splits the original domain into two overlapping subdomains. A hybrid difference scheme is proposed in which on the boundary layer region we use the central finite difference scheme on a uniform mesh while on the non-layer region we use the mid-point difference scheme on a uniform mesh. It is shown that the numerical approximations which converge in the maximum norm to the exact solution. When appropriate subdomains are used, the numerical approximations generated from the method are shown to be first order convergent. Furthermore it is shown that, two iterations are sufficient to achieve the expected accuracy. Numerical examples are presented to support the theoretical results. The main advantages of this method used with the proposed scheme is it reduces iteration counts very much and easily identifies in which iteration the Schwarz iterate terminates.

The Added Mass by Schwarz-Christoffel Transformation (Schwarz-Christoffel 변환(變換)에 의한 부가질량(附加質量)의 계산(計算))

  • J.H.,Hwang;C.H.,Lee
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.18 no.4
    • /
    • pp.13-20
    • /
    • 1981
  • The hydrodynamic added mass of two dimensional cylinders oscillating vertically at high frequencies in the free surface is of interest to ship vibration problems. Conformal transformation is one of the methods commonly in use for computing the inertia coefficient. Especially, Schwarz-Christoffel transformation has been employed to evaluate the inertia coefficient for the cylinders of straight frames and chines. In this paper, the inertia coefficient for the cylinders with round corners in vertical oscillation at high frequencies are evaluated by employing the Schwarz-Christoffel transformation for the concave corner. The results of calculation by employing the Schwarz-Christoffel transformation are found to be well within the expected range of values compared to Lewis form and the results obtained by source distribution method.

  • PDF

Presentation of a Novel E-Core Transverse-Flux Permanent Magnet Linear Motor and Its Magnetic Field Analysis Based on Schwarz-Christoffel Mapping Method

  • Fu, Dong-Shan;Xu, Yan-Liang
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1963-1969
    • /
    • 2017
  • In order to overcome the manufacturing difficulty of the transverse-flux permanent magnet linear motor (TFPMLM) and enhance its performance much better, a novel TFPMLM with E-core and 3 dimension (3D) magnetic structures is proposed in this paper. Firstly, its basic structure and operating principle are presented. Then the equivalent 2D configuration of the TFPMLM is transformed, so that the Schwarz-Christoffel (SC) mapping method can be used to analyze the motor. Furthermore, the air gap flux density distribution is solved by SC mapping method, based on which, the EMF waveform, no-load cogging force waveform and load force waveform are obtained. Finally, the prototyped TLPMLM is manufactured and the results are obtained from the experiment and 3D FEM, respectively, which are used to compare with those from SC mapping method.

TWO-LAYER MUTI-PARAMETERIZED SCHWARZ ALTERNATING METHOD FOR TWO-DIMENSIONAL PROBLEMS

  • Kim, Sang-Bae
    • Journal of applied mathematics & informatics
    • /
    • v.30 no.3_4
    • /
    • pp.477-488
    • /
    • 2012
  • The convergence rate of a numerical procedure based on Schwarz Alternating Method(SAM) for solving elliptic boundary value problems depends on the selection of the interface conditions applied on the interior boundaries of the overlapping subdomains. It has been observed that the mixed interface condition, controlled by a parameter, can optimize SAM's convergence rate. In [8], one introduced the two-layer multi-parameterized SAM and determined the optimal values of the multi-parameters to produce the best convergence rate for one-dimensional elliptic boundary value problems. In this paper, we present a method which utilizes the one-dimensional result to get the optimal convergence rate for the two-dimensional problem.

TWO-DIMENSIONAL MUTI-PARAMETERIZED SCHWARZ ALTERNATING METHOD

  • Kim, Sang-Bae
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.161-171
    • /
    • 2011
  • The convergence rate of a numerical procedure based on Schwarz Alternating Method(SAM) for solving elliptic boundary value problems depends on the selection of the interface conditions applied on the interior boundaries of the overlapping subdomains. It has been observed that the Robin condition (mixed interface condition), controlled by a parameter, can optimize SAM's convergence rate. In [7], one had formulated the multi-parameterized SAM and determined the optimal values of the multi-parameters to produce the best convergence rate for one-dimensional elliptic boundary value problems. However it was not successful for two-dimensional problem. In this paper, we present a new method which utilizes the one-dimensional result to get the optimal convergence rate for the two-dimensional problem.

TWO-LAYER MULTI-PARAMETERIZED SCHWARZ ALTERNATING METHOD FOR 3D-PROBLEM

  • KIM, SANG-BAE
    • Journal of applied mathematics & informatics
    • /
    • v.34 no.5_6
    • /
    • pp.383-395
    • /
    • 2016
  • The convergence rate of a numerical procedure based on Schwarz Alternating Method (SAM) for solving elliptic boundary value problems depends on the selection of the interface conditions applied on the interior boundaries of the overlapping subdomains. It has been observed that the Robin condition (mixed interface condition), controlled by a parameter, can optimize SAM's convergence rate. In [8], one formulated the twolayer multi-parameterized SAM and determined the optimal values of the multi-parameters to produce the best convergence rate for one-dimensional elliptic boundary value problems. Two-dimensional implementation was presented in [10]. In this paper, we present an implementation for threedimensional problem.

MULTI-PARAMETERIZED SCHWARZ ALTERNATING METHOD FOR 3D-PROBLEM

  • Kim, Sang-Bae
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.1_2
    • /
    • pp.33-44
    • /
    • 2015
  • The convergence rate of a numerical procedure based on Schwarz Alternating Method(SAM) for solving elliptic boundary value problems depends on the selection of the interface conditions applied on the interior boundaries of the overlapping subdomains. It has been observed that the Robin condition (mixed interface condition), controlled by a parameter, can optimize SAM's convergence rate. In [7], one formulated the multi-parameterized SAM and determined the optimal values of the multi-parameters to produce the best convergence rate for one-dimensional elliptic boundary value problems. Two-dimensional implementation was presented in [8]. In this paper, we present an implementation for three-dimensional problem.