• Title/Summary/Keyword: Schrodinger-Poisson system

Search Result 5, Processing Time 0.018 seconds

Self-consistent Solution Method of Multi-Subband BTE in Quantum Well Device Modeling (양자 우물 소자 모델링에 있어서 다중 에너지 부준위 Boltzmann 방정식의 Self-consistent한 해법의 개발)

  • Lee, Eun-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.2
    • /
    • pp.27-38
    • /
    • 2002
  • A new self-consistent mathematical model for semiconductor quantum well device was developed. The model was based on the direct solution of the Boltzmann transport equation, coupled to the Schrodinger and Poisson equations. The solution yielded the distribution function for a two-dimensional electron gas(2DEG) in quantum well devices. To solve the Boltzmann equation, it was transformed into a tractable form using a Legendre polynomial expansion. The Legendre expansion facilitated analytical evaluation of the collision integral, and allowed for a reduction of the dimensionality of the problem. The transformed Boltzmann equation was then discretized and solved using sparce matrix algebra. The overall system was solved by iteration between Poisson, Schrodinger and Boltzmann equations until convergence was attained.

GROUND STATE SIGN-CHANGING SOLUTIONS FOR NONLINEAR SCHRÖDINGER-POISSON SYSTEM WITH INDEFINITE POTENTIALS

  • Yu, Shubin;Zhang, Ziheng
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.1269-1284
    • /
    • 2022
  • This paper is concerned with the following Schrödinger-Poisson system $$\{\begin{array}{lll}-{\Delta}u+V(x)u+K(x){\phi}u=a(x){\mid}u{\mid}^{p-2}u&&\text{ in }{\mathbb{R}}^3,\\-{\Delta}{\phi}=K(x)u^2&&\text{ in }{\mathbb{R}}^3,\end{array}$$ where 4 < p < 6. For the case that K is nonnegative, V and a are indefinite, we prove the above problem possesses one ground state sign-changing solution with exactly two nodal domains by constraint variational method and quantitative deformation lemma. Moreover, we show that the energy of sign-changing solutions is larger than that of the ground state solutions. The novelty of this paper is that the potential a is indefinite and allowed to vanish at infinity. In this sense, we complement the existing results obtained by Batista and Furtado [5].

Modeling of Degenerate Quantum Well Devices Including Pauli Exclusion Principle

  • Lee, Eun-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.2
    • /
    • pp.14-26
    • /
    • 2002
  • A new model for degenerate semiconductor quantum well devices was developed. In this model, the multi-subband Boltzmann transport equation was formulated by applying the Pauli exclusion principle and coupled to the Schrodinger and Poisson equations. For the solution of the resulted nonlinear system, the finite difference method and the Newton-Raphson method was used and carrier energy distribution function was obtained for each subband. The model was applied to a Si MOSFET inversion layer. The results of the simulation showed the changes of the distribution function from Boltzmann like to Fermi-Dirac like depending on the electron density in the quantum well, which presents the appropriateness of this modeling, the effectiveness of the solution method, and the importance of the Pauli -exclusion principle according to the reduced size of semiconductor devices.

GROUND STATE SIGN-CHANGING SOLUTIONS FOR A CLASS OF SCHRÖDINGER-POISSON-KIRCHHOFF TYPEPROBLEMS WITH A CRITICAL NONLINEARITY IN ℝ3

  • Qian, Aixia;Zhang, Mingming
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.5
    • /
    • pp.1181-1209
    • /
    • 2021
  • In the present paper, we are concerned with the existence of ground state sign-changing solutions for the following Schrödinger-Poisson-Kirchhoff system $$\;\{\begin{array}{lll}-(1+b{\normalsize\displaystyle\smashmargin{2}{\int\nolimits_{{\mathbb{R}}^3}}}{\mid}{\nabla}u{\mid}^2dx){\Delta}u+V(x)u+k(x){\phi}u={\lambda}f(x)u+{\mid}u{\mid}^4u,&&\text{in }{\mathbb{R}}^3,\\-{\Delta}{\phi}=k(x)u^2,&&\text{in }{\mathbb{R}}^3,\end{array}$$ where b > 0, V (x), k(x) and f(x) are positive continuous smooth functions; 0 < λ < λ1 and λ1 is the first eigenvalue of the problem -∆u + V(x)u = λf(x)u in H. With the help of the constraint variational method, we obtain that the Schrödinger-Poisson-Kirchhoff type system possesses at least one ground state sign-changing solution for all b > 0 and 0 < λ < λ1. Moreover, we prove that its energy is strictly larger than twice that of the ground state solutions of Nehari type.

Quantum Mechanical Analysis for the Numerical Calculation of Two-Dimensional Electron Gas(2DEG) (2 차원 전자개스(2DEG)의 수치적 연산을 위한 양자역학적 분석)

  • 황광철;김진욱;류세환;안형근;한득영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.441-444
    • /
    • 1999
  • This paper analyzed arbitrary Energy band profile heterostructures by solving Schrodinger\`s equation the Poisson's equation self-consistently. Four different concentrations positively ionized donors holes in the valence band free electrons in the conduction band and 2DEG are taken to account for the whole system. 2DEG from both of the structures are obtained and compared with the data available in the literatures. Differential capacitances are also calculated from the concentration profiles obtained. Finally theoretical predictions for both of 2DEGs and the capacitances show good agreement with the experimental data referred in this study.

  • PDF