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GROUND STATE SIGN-CHANGING SOLUTIONS FOR

NONLINEAR SCHRÖDINGER-POISSON SYSTEM WITH

INDEFINITE POTENTIALS

Shubin Yu and Ziheng Zhang

Abstract. This paper is concerned with the following Schrödinger-
Poisson system{

−∆u+ V (x)u+K(x)φu = a(x)|u|p−2u in R3,

−∆φ = K(x)u2 in R3,

where 4 < p < 6. For the case that K is nonnegative, V and a are indefi-

nite, we prove the above problem possesses one ground state sign-changing
solution with exactly two nodal domains by constraint variational method

and quantitative deformation lemma. Moreover, we show that the energy

of sign-changing solutions is larger than that of the ground state solu-
tions. The novelty of this paper is that the potential a is indefinite and

allowed to vanish at infinity. In this sense, we complement the existing

results obtained by Batista and Furtado [5].

1. Introduction

In recent years, the following Schrödinger-Poisson system

(1.1)

{
−∆u+ V (x)u+K(x)φu = f(x, u) in R3,

−∆φ = K(x)u2 in R3,

has attached considerable attention both in physics and mathematics. From
the physical point of view, system (1.1) has a great importance in the study of
standing wave solutions e−iωtu(x) of the time-dependent Schrödinger-Poisson
system. Here, the potential V (x) represents the perturbation of the particle
at point x ∈ R3, the function K(x) is a measurable function representing a
charge corrector to the density u2, and the local nonlinearity f(x, u) simulates
the interaction effect among many particles. As is known to all, problem (1.1)
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is a nonlocal problem due to the appearance of the term K(x)φu, which causes
many mathematical difficulties and makes the study of system (1.1) particularly
interesting. For more details on the mathematical and physical background of
system (1.1), we refer the reader to the papers [1, 2, 21, 22] and the references
listed therein.

As far as system (1.1) is concerned, the studies related to it mainly focus
on the existence of positive solutions, sign-changing (nodal) solutions, radial
solutions and semiclassical states under variant assumptions on V (x), K(x) and
f(x, u) via variational methods, see, for instance, [3, 4, 8–12, 16–19, 23–27, 31]
and the references therein. Motivated by the above results, especially [5] and
[10], in present paper, we continue to discuss the sign-changing solutions for
system (1.1). To present our hypotheses conveniently, we give brief description
to those mentioned in [5] and [10]. Explicitly, Chen and Tang [10] studied the
following nonlinear Schrödinger-Poisson system{

−∆u+ V (x)u+ λφu = a(x)f(u) in R3,

−∆φ = u2 in R3,

where V, a are positive continuous potentials, f is a continuous function and
λ is a positive parameter. By developing a direct approach, the authors ob-
tained the existence results on the ground state sign-changing solutions. As
just mentioned, the results in [10] depend heavily on the positiveness of V and
a. Hence, it is natural to ask whether there admits ground-state sign-changing
solutions to system (1.1) if the potentials are allowed to change sign. For this
topic, to our best knowledge, only the recent paper [5] is related to it. Indeed,
Batista and Furtado [5] investigated the following system

(1.2)

{
−∆u+ V (x)u+K(x)φu = a(x)|u|p−2u in R3,

−∆φ = K(x)u2 in R3,

where 4 < p < 6, the potentials V and a can be indefinite, K is nonnegative.
Explicitly, the potential functions V , K and a are supposed to satisfy the
following hypothesis:

(V0) V − ∈ L 3
2 (R3) and

∫
R3 |V −(x)| 32 dx < S

3
2 ;

(V1) there exist γ > 0 and CV > 0 such that

V (x) ≤ V∞ − CV e−γ|x|

for a.e. x ∈ R3, where V −(x) :=min{V (x), 0}, V +(x) :=max{V (x), 0},
0 < V +

∞ := lim|x|→∞ V (x) and S is the best Sobolev constant of the

embedding D1,2(R3) ↪→ L6(R3);
(K0) K ∈ L2(R3) is nonnegative;
(K1) there exist µ > 0 and CK > 0 such that

0 ≤ K(x) ≤ CKe−µ|x|

for a.e. x ∈ R3;



SIGN-CHANGING SOLUTIONS FOR SCHRÖDINGER-POISSON SYSTEM 1271

(a0) a ∈ L∞(R3);
(a1) there exist θ > 0 and Ca > 0 such that

a(x) ≥ a∞ − Cae−θ|x|

for a.e. x ∈ R3, where a∞ := lim|x|→∞ a(x) > 0.

Based on the above assumptions, the authors in [5] proved that problem (1.2)
possesses one sign-changing minimal solution (ground state sign-changing so-
lution) by using some comparison argument of the minimax level of the energy
functional and that of the limit problem corresponding to system (1.2).

From the comparison techniques used in [5], we observe that the existence
of positive ground state solutions to the limit problem corresponding to system
(1.2) plays an essential role, namely, the following limit equation

(1.3) −∆u+ V∞u = a∞|u|p−1u.

It is obvious that if a∞ = 0, then Eq. (1.3) has only trivial solution. Therefore,
the method applied in [5] is no longer applicable to this situation. Inspired
by the above observation, the purpose of this paper is to consider the exis-
tence of ground state sign-changing solutions to system (1.2) for the case that
the potential a is allowed to vanish at infinity. Explicitly, in this paper the
assumptions related to V , K and a are presented as below:

(V ) V − ∈ L 3
2 (R3),

∫
R3 |V −(x)| 32 dx < S

3
2 and 0 < V +

∞ := lim|x|→+∞ V (x);

(K) K ∈ L2(R3) is nonnegative;

(a) a ∈ C(R3) ∩ L
6

6−p (R3) is indefinite.

Theorem 1.1. Suppose that 4 < p < 6 and the potentials satisfy (V ), (K) and
(a). Then problem (1.2) possesses one ground state sign-changing solution,
which has precisely two nodal domains.

Remark 1.2. Obviously, (V ) is weaker than (V0) and (V1), since it does not
need the exponent decay at infinity as in (V1); (K) and (K0) are the same; the
condition (a) evidently implies that it could not be lim|x|→∞ a(x) = a∞ > 0.
In fact, if lim|x|→∞ a(x) exists, then it must be a∞ = 0. Thus, our Theorem
1.1 complements the results obtained in [5].

Next, we introduce some notations and establish the variational framework
to deal with problem (1.2). For any 2 ≤ q ≤ ∞, ‖ · ‖q denotes the norm of

usual Lebesgue space Lq(R3), and let
(∫

R3 |∇u|2dx
)1/2

be the norm ofD1,2(R3).
Define

H :=

{
u ∈W 1,2(R3) :

∫
R3

V (x)u2 <∞
}
,

then, according to [13, Lemma 2.1] and [5, Section 2], the assumption (V )
guarantees that the norm

‖u‖ :=

(∫
R3

|∇u|2 + V (x)u2

)1/2
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is well defined and is equivalent to ‖ · ‖W 1,2(R3). Therefore, the embedding of

H ↪→ Lq(R3) is continuous for q ∈ [2, 6].
To deal with problem (1.2) applying for variational methods, the key obser-

vation is that it can be transformed into a Schrödinger equation with a nonlocal
term. Effectively, for K ∈ L2(R3), in view of the Lax-Milgram Theorem, for
each u ∈ H, there exists a unique φu ∈ D1,2(R3) such that −∆φ = K(x)u2,
and φu is of the form

φu(x) =
1

4π

∫
R3

K(y)u2(y)

|x− y|
dy,

see [21]. Inserting this φu into system (1.2), we can rewrite it into the following
equivalent scalar equation

−∆u+ V (x)u+K(x)φuu = a(x)|u|p−2u.

Therefore, for problem (1.2), the associated energy functional is defined on H
as follows

I(u) :=
1

2
‖u‖2 +

1

4

∫
R3

K(x)φuu
2dx− 1

p

∫
R3

a(x)|u|pdx.

Obviously, I ∈ C1(H,R) and

〈I ′(u), ϕ〉 =

∫
R3

(∇u ·∇ϕ+V (x)uϕ)dx+

∫
R3

K(x)φuuϕdx−
∫
R3

a(x)|u|p−2uϕdx

for all u, ϕ ∈ H. Clearly, the critical points of I correspond to the weak
solutions of system (1.2). Furthermore, if u ∈ H is a solution of system (1.2)
with u± 6= 0, then u is a sign-changing solution, where u+(x) = max{u(x), 0}
and u−(x) = min{u(x), 0}.

Remark 1.3. To obtain the existence of ground state sign-changing solutions
of system (1.2), the usual strategy is to deal with the minimizing problem as
follows

(1.4) m := inf
u∈M

I(u),

where M is the sign-changing Nehari manifold defined by

M = {u ∈ H : u± 6= 0, 〈I ′(u), u+〉 = 〈I ′(u), u−〉 = 0}.

This is also the scheme we intent to employ to our Theorem 1.1. However, for
our situation, due to the facts that the potentials V and a are indefinite and
the corresponding limit equation could not give us any help, the techniques
involving the potential a in existing literature cannot be applied directly to our
case. Having this in our mind and observing the key steps for sign-changing
solutions, the first step we need to do is to check that M 6= ∅. To this end,
we introduce the set A (see (2.1) for its definition). Once A 6= ∅ is verified,
the argument in Lemma 2.4 below guarantees that M 6= ∅. Meanwhile, the
condition (a) ensures that m = infu∈M I(u) is achieved by some u0 ∈ M.



SIGN-CHANGING SOLUTIONS FOR SCHRÖDINGER-POISSON SYSTEM 1273

Finally, applying quantitative deformation lemma, we show that u0 is a ground
state sign-changing solution.

Another aim of this paper is to show that the energy of ground state sign-
changing solutions of system (1.2) is larger than two times of the least en-
ergy. This property is called energy doubling by Weth in [28] and has not been
considered for Schrödinger-Poisson system with indefinite potentials. For this
purpose, we need to consider the following minimizing problem

(1.5) c := inf
u∈N

I(u),

where N is the Nehari manifold corresponding to system (1.2) defined by

(1.6) N := {u ∈ H\{0} : 〈I ′(u), u〉 = 0}.

Theorem 1.4. Suppose that the assumptions of Theorem 1.1 are satisfied.
Then

I(u0) ≥ 2c,

where u0 is the ground state sign-changing solution obtained in Theorem 1.1.
In particular, c is achieved by a nonnegative function.

This paper is organized as follows. In Section 2, some useful preliminary
lemmas are presented to pave the way for ground state sign-changing solutions.
Then, Section 3 is devoted to finish the proofs of our main results.

2. Preliminaries

We begin this section by listing some properties related to φu (see [6, Lemma
2.1], [14, Lemma 2.2] and [15, Lemma 2.3]).

Lemma 2.1. For any u ∈ H, φu has following properties:

(i) φu ≥ 0 for a.e. x ∈ R3 and φtu = t2φu, ∀t > 0;
(ii) there exists C > 0 independent of u such that

∫
R3 |∇φu|2dx ≤ C‖u‖26;

(iii) if un ⇀ u in H and un → u a.e. in R3, then

lim
n→∞

∫
R3

K(x)φun
u2
ndx =

∫
R3

K(x)φuu
2dx,

lim
n→∞

∫
R3

K(x)φun
(u±n )2dx =

∫
R3

K(x)φu(u±)2dx,

lim
n→∞

∫
R3

K(x)φununϕdx =

∫
R3

K(x)φuuϕdx, ∀ϕ ∈ H.

Hereafter, we use the letter C to denote a positive constant whose value
may change from line to line. Next, we recall one convergence conclusion,
which plays a crucial role in checking the reachability of m. For its proof, we
refer the reader to [30, Lemma 2.1] or [7, Lemma 2.3].
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Lemma 2.2. Assume that (a) holds and un ⇀ u in H, un → u a.e. in R3.
Then

lim
n→∞

∫
R3

a(x)|un|pdx =

∫
R3

a(x)|u|pdx

and

lim
n→∞

∫
R3

a(x)|un|p−2unϕdx =

∫
R3

a(x)|u|p−2uϕdx, ∀ϕ ∈ H.

In the following, we check that the sign-changing Nehari manifold M is
non-empty. To this end, define A as follows:

(2.1) A :=

{
u ∈ H : u± 6= 0,

∫
R3

a(x)|u±|pdx > 0

}
.

Lemma 2.3. Assume that (V ), (K) and (a) hold. Then A 6= ∅ and M⊂ A.

Proof. Clearly, A 6= ∅. To see it, we pick some u ∈ H with supp(u) ⊂ a+

where a+ :=
{
x ∈ R3 : a(x) > 0

}
. Then, u ∈ A, namely, A 6= ∅. Therefore, to

reach the conclusion of Lemma 2.3, it only needs to verifyM⊂ A. In fact, for
u ∈M, that is, u± 6= 0 and 〈I ′(u), u±〉 = 0, it gives that

‖u±‖2 +

∫
R3

K(x)φu(u±)2dx =

∫
R3

a(x)|u±|pdx.

The positiveness of the left-hand side of the above equality yields that u ∈ A,
that is to say, M⊂ A. �

Now, with the help of the elements in A, it can be checked that M 6=
∅. To demonstrate this point and discuss some properties of elements in M
conveniently, define ψu : R2

+ → R by ψu(s, t) = I(su+ + tu−) for u ∈ H with
u± 6= 0.

Lemma 2.4. Assume that (V ), (K) and (a) hold. Then, for any u ∈ A, ψu
has the following properties:

(1) the pair (s, t) is a critical point of ψu with s, t > 0 if and only if
su+ + tu− ∈M;

(2) the map ψu has a unique critical point (su, tu) on (0,∞)×(0,∞), which
is also the unique maximum point of ψu on [0,∞)×[0,∞); furthermore,
if 〈I ′(u), u±〉 ≤ 0, then 0 < su, tu ≤ 1.

Proof. Note that

∇ψu(s, t) = (〈I ′(su+ + tu−), u+〉, 〈I ′(su+ + tu−), u−〉)

=

(
1

s
〈I ′(su+ + tu−), su+〉, 1

t
〈I ′(su+ + tu−), tu−〉

)
,

it is obvious that (1) holds.
Next, we prove (2). Firstly, we show the existence of su and tu, namely,

M 6= ∅. From (a) and the Hölder’s inequality, we obtain that

(2.2)

∫
R3

a(x)|u±|pdx ≤ ‖a‖ 6
6−p
‖u±‖p6.
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Then, Sobolev embedding theorem and (2.2) deduce that

〈I ′(su+ + tu−), su+〉 ≥ s2‖u+‖2 − sp‖a‖ 6
6−p
‖u+‖p6

≥ s2‖u+‖2 − Csp‖u+‖p.

Since 4 < p < 6, the above inequality implies that 〈I ′(su+ + tu−), su+〉 > 0 for
s small enough and all t > 0. Similarly, we obtain that 〈I ′(su+ +tu−), tu−〉 > 0
for t small enough and all s > 0. Therefore, there exists δ1 > 0 such that

(2.3) 〈I ′(δ1u++tu−), δ1u
+〉 > 0 and 〈I ′(su++δ1u

−), δ1u
−〉 > 0 for all s, t > 0.

On the other hand, based on u ∈ A and 4 < p < 6, we can choose s = δ′2 > δ1
large enough to guarantee that

〈I ′(δ′2u+ + tu−), δ′2u
+〉 ≤ (δ′2)2‖u+‖2 + (δ′2)4

∫
R3

K(x)φu+(u+)2dx

+ (δ′2)4

∫
R3

K(x)φu−(u+)2dx− (δ′2)p
∫
R3

a(x)|u+|pdx

< 0 for t ∈ [δ1, δ
′
2].

Similarly, we can take t = δ′′2 > δ1 large enough to ensure that

〈I ′(su+ + δ′′2u
−), δ′′2u

−〉 ≤ (δ′′2 )2‖u−‖2 + (δ′′2 )4

∫
R3

K(x)φu−(u−)2dx

+ (δ′′2 )4

∫
R3

K(x)φu+(u−)2dx− (δ′′2 )p
∫
R3

a(x)|u−|pdx

< 0 for s ∈ [δ1, δ
′′
2 ].

For δ2 = max{δ′2, δ′′2 }, it deduces that

(2.4) 〈I ′(δ2u+ + tu−), δ2u
+〉 < 0 and 〈I ′(su+ + δ2u

−), δ2u
−〉 < 0

for all s, t ∈ [δ1, δ2].
Combining (2.3), (2.4) with Miranda’s Theorem ([20]), there exists (su, tu) ∈

(0,∞)× (0,∞) such that 〈I ′(su+ + tu−), su+〉 = 〈I ′(su+ + tu−), tu−〉 = 0, i.e.,
suu

+ + tuu
− ∈M.

In the following, we prove the uniqueness of the pair (su, tu).
Case 1. u ∈M. It is sufficient to show that (su, tu) = (1, 1) is the unique pair
of numbers such that suu

+ + tuu
− ∈M. Let (s0, t0) be a pair of numbers such

that s0u
+ + t0u

− ∈M. Then, one has

(2.5)

s2
0‖u+‖2 + s4

0

∫
R3

K(x)φu+(u+)2dx+ s2
0t

2
0

∫
R3

K(x)φu−(u+)2dx

= sp0

∫
R3

a(x)|u+|pdx
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and

(2.6)

t20‖u−‖2 + t40

∫
R3

K(x)φu−(u−)2dx+ s2
0t

2
0

∫
R3

K(x)φu+(u−)2dx

= tp0

∫
R3

a(x)|u−|pdx.

Assume that 0 < s0 ≤ t0, it holds from (2.6) that

(2.7)

‖u−‖2

t20
+

∫
R3

K(x)φu−(u−)2dx+

∫
R3

K(x)φu+(u−)2dx

≥ tp−4
0

∫
R3

a(x)|u−|pdx.

In addition, since u ∈M, it means that

(2.8) ‖u±‖2+

∫
R3

K(x)φu±(u±)2dx+

∫
R3

K(x)φu∓(u±)2dx=

∫
R3

a(x)|u±|pdx.

Therefore, together with (2.7) and (2.8), it readily yields that(
1

t20
− 1

)
‖u−‖2 ≥ (tp−4

0 − 1)

∫
R3

a(x)|u−|pdx.

If t0 > 1, the left-hand side of the above inequality is negative, which is absurd
because the right-hand side is positive due to 4 < p < 6. Therefore, it indicates
that 0 < s0 ≤ t0 ≤ 1. Similarly, in light of (2.5) and 0 < s0 ≤ t0, we can
conclude that s0 ≥ 1. Consequently, s0 = t0 = 1.
Case 2. u /∈ M. Suppose that there exist (s1, t1) and (s2, t2) such that
u1 = s1u

+ + t1u
− ∈M and u2 = s2u

+ + t2u
− ∈M, respectively. Observe that

u2 =
(s2

s1

)
s1u

+ +
( t2
t1

)
t1u
− =

(s2

s1

)
u+

1 +
( t2
t1

)
u−1 ∈M.

then it follows from Case 1 that s2
s1

= t2
t1

= 1, thanks to u1 ∈M.

Now, it turns to prove that (su, tu) is the unique maximum point of ψu on
[0,∞)× [0,∞). In fact, according to the following expression

ψu(s, t) = I(su+ + tu−)

=
s2

2
‖u+‖2 +

t2

2
‖u−‖2 +

s4

4

∫
R3

K(x)φu+(u+)2dx

+
t4

4

∫
R3

K(x)φu−(u−)2dx+
s2t2

4

∫
R3

K(x)φu−(u+)2dx

+
s2t2

4

∫
R3

K(x)φu+(u−)2dx− sp

p

∫
R3

a(x)|u+|pdx

− tp

p

∫
R3

a(x)|u−|pdx,

it is evident that lim|(s,t)|→∞ ψu(s, t) = −∞. Since we already know that
(su, tu) is the unique critical point of ψu on (0,∞) × (0,∞), it is sufficient to
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check that a maximum point cannot be achieved on the boundary of [0,∞)×
[0,∞). Without loss of generality, we may assume that (0, t0) is a maximum
point of ψu. Then, for s > 0 small enough, it is obvious that

(ψu)′s(s, t0) = s‖u+‖2 + s3

∫
R3

K(x)φu+(u+)2dx+
st20
2

∫
R3

K(x)φu−(u+)2dx

+
st20
2

∫
R3

K(x)φu+(u−)2dx− sp−1

∫
R3

a(x)|u+|pdx > 0,

which indicates that ψu is increasing with respect to s when s is small enough.
In other words, ψu can not achieve its global maximum on (0, t0) with t0 > 0.

To accomplish this lemma, it remains to show that 0 < su, tu ≤ 1 if
〈I ′(u), u±〉 ≤ 0. Suppose su ≥ tu > 0, since suu

+ + tuu
− ∈ M, it follows

that

(2.9)

s2
u‖u+‖2 + s4

u

∫
R3

K(x)φu+(u+)2dx+ s4
u

∫
R3

K(x)φu−(u+)2dx

≥ s2
u‖u+‖2 + s4

u

∫
R3

K(x)φu+(u+)2dx+ s2
ut

2
u

∫
R3

K(x)φu−(u+)2dx

= spu

∫
R3

a(x)|u+|pdx.

Besides, the assumption 〈I ′(u), u+〉 ≤ 0 gives that

(2.10) ‖u+‖2+
∫
R3

K(x)φu+(u+)2dx+

∫
R3

K(x)φu−(u+)2dx≤
∫
R3

a(x)|u+|pdx.

So, by virtue of u ∈ A, (2.9) and (2.10), the same argument in Case 1 brings
that su ≤ 1. Thus, we have 0 < tu ≤ su ≤ 1. �

Lemma 2.5. Assume that (V ), (K) and (a) hold. Then m > 0 is achieved.

Proof. Taking into account that 〈I ′(u), u±〉 = 0, ∀u ∈M, (2.2), Lemma 2.1(i),
and Sobolev embedding theorem, we obtain that

‖u±‖2 ≤ ‖u±‖2 +

∫
R3

K(x)φu(u±)2dx

=

∫
R3

a(x)|u±|pdx ≤ ‖a‖ 6
6−p
‖u±‖p6 ≤ C‖u±‖p,

which leads to

(2.11) ‖u±‖2 ≥
(

1

C

)2/(p−2)

:= α > 0.

In addition, for all u ∈M ⊂ N , one has

(2.12) I(u) = I(u)− 1

4
〈I ′(u), u〉 =

1

4
‖u‖2+

(
1

4
− 1

p

)∫
R3

a(x)|u|pdx ≥ 1

4
‖u‖2.

Consequently, (2.11) and (2.12) bring that m ≥ α
2 > 0.
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Let {un} ⊂ M be a sequence such that I(un) → m. It is easy to see that
{un} is bounded in H. Therefore, there exists u0 ∈ H such that, passing to a
subsequence if necessary,

(2.13) u±n ⇀ u±0 in H and u±n → u±0 a.e. in R3.

Meanwhile, since un ∈ M, then same to (2.11) it also holds that ‖u±n ‖2 ≥ α.
Thus, on the observation of

‖u±n ‖2 ≤ ‖u±n ‖2 +

∫
R3

K(x)φun
(u±n )2dx =

∫
R3

a(x)|u±n |pdx,

it follows from (2.13) and Lemma 2.2 that

(2.14)

∫
R3

a(x)|u±0 |pdx ≥ α > 0,

which means that u±0 6= 0. Furthermore, since {un} ⊂ M, applying Lemma
2.1, Lemma 2.2 and the weakly lower semicontinuity of norm, we have

‖u±0 ‖2 +

∫
R3

K(x)φu0
(u±0 )2dx ≤ lim inf

n→∞

[
‖u±n ‖2 +

∫
R3

K(x)φun
(u±n )2dx

]
=

∫
R3

a(x)|u±0 |pdx,

which yields that

〈I ′(u0), u0〉 ≤ 0.

At this point, using Lemma 2.4(2), we know that there exists (s0, t0) ∈ (0, 1]×
(0, 1] such that s0u

+
0 + t0u

−
0 ∈ M. Hence, in view of (2.14) and the weakly

lower semicontinuity of norm, we infer that

m ≤ I(s0u
+
0 + t0u

−
0 )

= I(s0u
+
0 + t0u

−
0 )− 1

4
〈I ′(s0u

+
0 + t0u

−
0 ), s0u

+
0 + t0u

−
0 〉

=
s2

0

4
‖u+

0 ‖2 +
t20
4
‖u−0 ‖2 +

(
1

4
− 1

p

)
sp0

∫
R3

a(x)|u+
0 |pdx

+ tp0

(
1

4
− 1

p

)
tp0

∫
R3

a(x)|u−0 |pdx

≤ 1

4
‖u0‖2 +

(
1

4
− 1

p

)∫
R3

a(x)|u0|pdx

≤ lim inf
n→∞

[
I(un)− 1

4
〈I ′(un), un〉

]
= m.

Then, we conclude that s0 = t0 = 1. Thus, u0 = u+
0 + u−0 ∈ M and I(u0) =

m. �
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3. Proofs of the main results

In this section we focus our attention to complete the proofs of Theorems
1.1 and 1.4. We first prove that the minimizer u0 obtained in Lemma 2.5 for
minimization problem (1.4) is indeed a sign-changing solution of system (1.2),
that is, I ′(u0) = 0. Although this procedure is standard, we still give the
details for the reader’s convenience as well as the completeness of our article.

Proof of Theorem 1.1. Arguing by contradiction, if I ′(u0) 6= 0, by the continu-
ity of I ′, there exist γ, δ > 0 such that

(3.1) ‖I ′(u)‖ ≥ γ, ∀u ∈ H with ‖u− u0‖ ≤ 3δ.

Choose σ ∈ (0,min{ 1
2 ,

δ√
2‖u0‖

}). Let D := (1 − σ, 1 + σ) × (1 − σ, 1 + σ) and

define the function g : D → H by g(s, t) = su+
0 + tu−0 . Since u0 ∈M, it follows

from Lemma 2.4 that

(3.2) m̄ := max
(s,t)∈∂D

I(g(s, t)) < I(g(1, 1)) = m.

For 0 < ε < min{m−m̄2 , γδ8 } and S = {u ∈ H : ‖u − u0‖ ≤ δ}, by (3.1) we see
that

(3.3) ‖I ′(u)‖ ≥ 8ε

δ
, u ∈ I−1([m− 2ε,m+ 2ε]) ∩ S2δ,

where S2δ is the set {u ∈ H : dist(u, S) ≤ 2δ}. In view of (3.3) and applying
[29, Lemma 2.3], there exists a deformation η ∈ C([0, 1]×H,H) such that

(i) η(1, u) = u if u /∈ I−1([m− 2ε,m+ 2ε]) ∩ S2δ;
(ii) η(1, Im+ε ∩ S) ⊂ Im−ε;
(iii) I(η(1, u)) ≤ I(u) for all u ∈ H.

For this deformation, with the help of Lemma 2.4, it is clear that

(3.4) max
(s,t)∈D̄

I(η(1, g(s, t))) < m.

In fact, on the one had, due to I(g(s, t)) ≤ m < m+ ε, one has g(s, t) ∈ Im+ε.
On the other hand, from the definition of σ, we have

‖g(s, t)− u0‖2 = ‖(s− 1)u+
0 + (t− 1)u−0 ‖2

≤ 2[(s− 1)2‖u+
0 ‖2 + (t− 1)2‖u−0 ‖2] ≤ 2σ2‖u0‖2 < δ2,

which shows that g(s, t) ∈ S for all (s, t) ∈ D̄. Therefore, according to (ii) for
η, (3.4) holds.

Next, we claim that η(1, g(D))∩M 6= ∅, which contradicts to the definition
of m. To do this, let us define h(s, t) := η(1, g(s, t)) and

Φ0 := (〈I ′(su+
0 + tu−0 ), u+

0 〉, 〈I ′(su
+
0 + tu−0 ), u−0 〉) := (τ1

u0
(s, t), τ2

u0
(s, t)),

Φ1 := (
1

s
〈I ′(h(s, t)), h+(s, t)〉, 1

t
〈I ′(h(s, t)), h−(s, t)〉).
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By a direct calculation, we deduce that

∂τ1
u0

(s, t)

∂s
|(1, 1) = ‖u+

0 ‖2 + 3

∫
R3

K(x)φu+
0

(u+
0 )2dx+

∫
R3

K(x)φu−
0

(u+
0 )2dx

− (p− 1)

∫
R3

a(x)|u+
0 |pdx,

∂τ2
u0

(s, t)

∂t
|(1, 1) = ‖u−0 ‖2 + 3

∫
R3

K(x)φu−
0

(u−0 )2dx+

∫
R3

K(x)φu+
0

(u−0 )2dx

− (p− 1)

∫
R3

a(x)|u−0 |pdx,

∂τ1
u0

(s, t)

∂t
|(1, 1) = 2

∫
R3

K(x)φu−
0

(u+
0 )2dx,

∂τ2
u0

(s, t)

∂s
|(1, 1)

= 2

∫
R3

K(x)φu+
0

(u−0 )2dx.

Since u0 ∈M, equivalently we have

∂τ1
u0

(s, t)

∂s
|(1, 1) = −2‖u+

0 ‖2− 2

∫
R3

K(x)φu−
0

(u+
0 )2dx− (p− 4)

∫
R3

a(x)|u+
0 |pdx

and

∂τ2
u0

(s, t)

∂t
|(1, 1) = −2‖u−0 ‖2−2

∫
R3

K(x)φu+
0

(u−0 )2dx− (p−4)

∫
R3

a(x)|u−0 |pdx.

Then, we readily derive that the determinant of Hessian matrix of Φ0 at (1, 1)
is positive, namely,

detM =

∣∣∣∣∣∣∣
∂τ1

u0
(s,t)

∂s |(1, 1)
∂τ1

u0
(s,t)

∂t |(1, 1)

∂τ2
u0

(s,t)

∂s |(1, 1)
∂τ2

u0
(s,t)

∂t |(1, 1)

∣∣∣∣∣∣∣ > 0.

Observing that Φ0 is continuously differentiable and (1, 1) is the unique isolated
zero point, we deduce that deg(Φ0, D, 0) = 1 by using the degree theory. At
this point, taking into account that m̄ < m − 2ε, (3.2) and (i) corresponding
to η, we infer that g = h on ∂D. Thus, it concludes that deg(Φ1, D, 0) =
deg(Φ0, D, 0) = 1, which brings that there exists a pair (s0, t0) ∈ D such that
Φ1(s0, t0) = 0. That is to say, η(1, g(s0, t0)) = h(s0, t0) ∈ M, which is a
contradiction with (3.4). Therefore, we derive that u0 is a nontrivial ground
state sign-changing solution for system (1.2).

Now, we show that u0 has exactly two nodal domains. To this end, we
assume by contradiction that u0 = u1 + u2 + u3 with

ui 6= 0, u1 ≥ 0, u2 ≤ 0 and supp(ui) ∩ supp(uj) = ∅ for i 6= j (i, j = 1, 2, 3).

Note that I ′(u0) = 0, it is obvious that

〈I ′(u0), ui〉 = 0 for i = 1, 2, 3.
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Choose v := u1 + u2, it holds that v+ = u1 6= 0 and v− = u2 6= 0. Moreover,
due to the facts

I ′(v)v+ = I ′(v)u1 = I ′(u0)u1 −
∫
R3

K(x)φu3(u1)2dx ≤ 0

and

I ′(v)v− = I ′(v)u2 = I ′(u0)u2 −
∫
R3

K(x)φu3(u2)2dx ≤ 0,

it is easy to see∫
R3

a(x)|u1|pdx > 0 and

∫
R3

a(x)|u2|pdx > 0.

That is, v ∈ A. Then, by Lemma 2.4, there is a unique pair (sv, tv) ∈ (0, 1]×
(0, 1] such that svv

++tvv
− ∈M, or equivalently, svu1+tvu2 ∈M. In addition,

a direct calculation shows that

(3.5)

0 =
1

4
〈I ′(u0), u3〉

=
1

4
‖u3‖2 +

1

4

∫
R3

K(x)φu3(u3)2dx+
1

4

∫
R3

K(x)φu1(u3)2dx

+
1

4

∫
R3

K(x)φu2
(u3)2dx− 1

4

∫
R3

a(x)|u3|pdx

< I(u3) +
1

4

∫
R3

K(x)φu1
(u3)2dx+

1

4

∫
R3

K(x)φu2
(u3)2dx

and

(3.6)

I(svu1 + tvu2) = I(svu1) + I(tvu2) +
s2
vt

2
v

4

∫
R3

K(x)φu1
(u2)2dx

+
s2
vt

2
v

4

∫
R3

K(x)φu2(u1)2dx

≤ 1

4
‖u1‖2 +

(
1

4
− 1

p

)∫
R3

a(x)|u1|pdx+
1

4
‖u2‖2

+

(
1

4
− 1

p

)∫
R3

a(x)|u2|pdx

= I(u1) + I(u2) +
1

4

∫
R3

K(x)φu2(u1)2dx

+
1

4

∫
R3

K(x)φu3
(u1)2dx+

1

4

∫
R3

K(x)φu1
(u2)2dx

+
1

4

∫
R3

K(x)φu3
(u2)2dx.
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Hence, from (3.5) and (3.6), we have

m ≤ I(svu1 + tvu2)

< I(u1) + I(u2) + I(u3) +
1

4

∫
R3

K(x)φu2
(u1)2dx

+
1

4

∫
R3

K(x)φu3(u1)2dx+
1

4

∫
R3

K(x)φu1(u2)2dx

+
1

4

∫
R3

K(x)φu3
(u2)2dx+

1

4

∫
R3

K(x)φu1
(u3)2dx

+
1

4

∫
R3

K(x)φu2(u3)2dx

= I(u0) = m,

which reaches to a contradiction. In this way, u3 = 0 and u0 has exactly two
nodal domains. �

As the end of this paper, we are devoted to finish the proof of Theorem 1.4.

Proof of Theorem 1.4. Let c and N be given by (1.5) and (1.6), respectively.
Then, similar to the proof of Lemma 2.5, we can deduce that there exists
v ∈ N such that I(v) = c > 0. Consider v̄ = |v|, it is obvious that v̄ ∈ N and
I(v̄) = I(v) = c. Namely, v̄ is a nonnegative ground state solution of system
(1.2).

Since u0 is a sign-changing solution with exactly two nodal domains, it can
be supposed that u0 = u+

0 +u−0 . Because u0 ∈M ⊂ A, it is easy to check that
there is a unique s̃u+

0
> 0 such that s̃u+

0
u+

0 ∈ N . Observing that

〈I ′(u+
0 ), u+

0 〉 ≤ 〈I ′(u
+
0 ), u+

0 〉+

∫
R3

K(x)φu−
0

(u+
0 )2dx = 〈I ′(u0), u+

0 〉 = 0,

we infer that s̃u+
0
∈ (0, 1]. The same argument deduces that there is a unique

t̃u−
0
∈ (0, 1] such that t̃u−

0
u−0 ∈ N . As a result, using Lemma 2.4, we have

2c ≤ I(s̃u+
0
u+

0 ) + I(t̃u−
0
u−0 ) ≤ I(s̃u+

0
u+

0 + t̃u−
0
u−0 ) ≤ I(u+

0 + u−0 ) = m,

that is, I(u0) ≥ 2c. �
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